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Autonomous systems emerge from the need to progressively replace human operators by autonomous agents in a 

wide variety of application areas. We offer an analysis of the state of art in developing autonomous systems, focusing 

on design and validation, and showing that the multi-faceted challenges involved go well beyond the limits of weak 

AI. We argue that traditional model-based techniques are defeated by the complexity of the problem, while solutions 

based on end-to-end machine learning fail to provide the necessary trustworthiness. We advocate a hybrid design 

approach, which combines the two, adopting the best of each, and seeks tradeoffs between trustworthiness and 

performance. We claim that traditional risk analysis and mitigation techniques fail to scale, and discuss the trend of 

moving away from correctness at design time and towards reliance on runtime assurance techniques. We argue that 

simulation and testing remain the only realistic approach for global validation, and show how current methods can be 

adapted to autonomous systems. We conclude by discussing the factors that will play a decisive role in the acceptance 

of autonomous systems, and by highlighting the urgent need for new theoretical foundations. 
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1 INTRODUCTION 

1.1 Characteristics of Autonomous Systems 

Autonomous systems emerge from the need to automate existing organizations by progressive and 

incremental replacement of human operators by autonomous agents. They are very different from game-

playing robots or intelligent personal assistants, are often critical, and should exhibit ۔broad intelligenceە 
by handling knowledge in order to adapt to unpredictable and complex environments. In particular, this 

implies the ability to manage dynamically changing sets of possibly conflicting goals. Furthermore, 

autonomous systems should be able to collaborate harmoniously with human agents to achieve common 

goals. 

The development of trustworthy autonomous systems, as anticipated by the Industrial Internet of 

Things, is considered a bold step toward closing the gap between human and artificial intelligence.   

Autonomous vehicles are a topical case, emblematically illustrating the difficulties in moving from 

automation to autonomy. In contrast to the aerospace and rail industries, current trends in engineering 

autonomous vehicles have not followed a ۔safety by designە concept. To overcome the technical 
difficulties implied by model-based approaches, some industrial players have developed end-to-end ML-

enabled solutions, for which there exist no rigorous validation techniques. Furthermore, in contrast to 

standard engineering practice, critical software can be modified by over-the-air updates. 
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Many believe that it is necessary to break with current development techniques, which constitute an 

obstacle to the acceptance of new technologies. Some show blunt realism, by claiming that we should 

charge ahead with new ideas, accepting the risks, as the benefits will be so great. Others reject rigorous 

approaches as inherently inadequate for such complex systems and show blind faith in ad hoc solutions. 

And then there are those who are wildly optimistic, believing that we already have the right tools and that 

full autonomy is only a matter of time. 

1.2 Trustworthiness 

The design of autonomous agents should not be limited to logical aspects. It must also address risk 

analysis, mitigation and evaluation, focusing on the dangerous situations that can result from the 

interaction of the agent with its environment. We point out that existing techniques are not up to the task 

because they assume an exhaustive analysis of the causes of the risk and the deployment of mitigation 

mechanisms at the design stage. This does not seem realistic due to the inherent complexity of the 

environment of an autonomous system. One trend in the quest to overcome these difficulties is to break 

away from the idea of correction at design time, and indeed new ideas are emerging that rely on run-time 

assurance techniques replacing static mitigation mechanisms. 

The global validation of autonomous systems, regarded as ensembles of autonomous agents interacting 

to achieve collective goals, challenges rigorous validation techniques not only due to complexity issues but 

also by the lack of adequate modeling frameworks. Moreover, complexity arises not only from obvious 

metrics like the number of lines of code or the number of components, but also from the temporal and 

spatial dynamism of the agents' interactions with the cyber-physical and human environments. 

Simulation and testing remain the only feasible approach to assess the trustworthiness of an overall 

system. However, existing theory and techniques for testing hardware and software systems are model-

based. They pursue well-defined objectives in the form of coverage criteria or achievement of test 

purposes that can be formulated and understood in a rigorous manner. Their application to autonomous 

systems would require the development of far more powerful modeling and testing techniques, as well as 

the formalization of adequate success criteria. 

1.3 Can we Build Reliable Autonomous Systems? 

Systems engineering is reaching a turning point, moving from small, automated, centralized, non-scalable 

systems with predictable environments, to large, autonomous, distributed, reconfigurable systems with 

unpredictable, dynamically changing environments. The two main problems, which are of comparable 

importance, are: (1) the design of autonomous agents that are able to pursue predefined goals in 

unpredictable environments, and (2) the global validation of autonomous systems composed of an arbitrary 

(and dynamically changing) number of interacting agents. 

Currently there are two different technical avenues for developing such systems, but both fall short of 

addressing the full autonomy challenge. On the one hand, traditional model-based critical systems 

engineering – successfully applied in, e.g., the automotive and aerospace industry – proves to be 

inadequate for autonomous systems, being unable to deal with the overwhelming complexity of the 

problem. On the other hand, end-to-end solutions based solely on machine learning (ML) – developed by 
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large technology companies such as Waymo and Nvidia's autonomous driving platforms – exhibit a lack of 

explainability, which is a key barrier to their use for critical autonomous systems. 

We provide a technical characterization of autonomous agents as the composition of characteristic 

functions, allowing, among other things, a clear distinction between automation and autonomy. This 

characterization shows that there is a big gap between automated systems and fully autonomous ones, 

which cannot be bridged by mere incremental improvement of existing solutions. For example, the 

inevitable integration into autonomous systems of modules that employ artificial intelligence makes 

current non-AI systems engineering techniques and standards vastly inadequate. Moreover, we argue that 

the vision of autonomous systems also raises difficult systems engineering issues that are not directly 

related to achieving intelligence.  

One of the promising avenues to explore further is "hybrid designە, which attempts to use the best parts 
of the two approaches, ML-based and model-based, and to find tradeoffs between trustworthiness and 

performance. A crucial issue is the need for a coherent integration of heterogeneous data and model-based 

components into a rigorous design flow.   

1.4 Structure of the Paper 

The paper is a continuation of our work, as described in previous publications with Assaf Marron [1,2], 

advocating the vision of an Autonomics foundation for future generation autonomous systems. In line 

with this vision, the present paper provides a more detailed analysis of the problems to be addressed and 

discusses possible technical paths towards solutions. 

Section 2 explains why it is difficult to build autonomous systems, by describing in some detail the 

many facets of the challenge. 

Section 3 discusses issues related to hybrid design, assuming that the decision-making process is model-

based. It advocates the need for a hierarchical semantic model of the agent’s environment, integrating 
concrete and symbolic data at different abstraction levels. The section closes with a presentation of non-

trivial issues regarding the application of existing risk analysis techniques to autonomous vehicles, and 

indicates possible avenues towards their solution. 

Section 4 presents ideas for evaluating overall system properties using simulation and testing. We show 

how current methods and practices can be extended and adapted to autonomous systems, and identify 

emerging technical requirements. We conclude with a discussion of criteria for corroborating conclusive 

evidence of trustworthiness. 

Section 5 discusses factors that we feel will play a decisive role in shaping the future, such as the 

division of labor between humans and autonomous systems, the role and effect of regulations, and ethical 

issues. We then conclude by articulating the urgent need for new theoretical foundations, bridging the gap 

between machine and human intelligence. 
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2 REALIZING THE MAGNITUDE OF THE UNDERTAKING 

2.1 Autonomy and Autonomic Complexity 

The concept of autonomous systems has been around for more than two decades. It has motivated a large 

amount of research and development, which, for the most part, falls under the headings of autonomic 

computing [3], adaptive systems and autonomous agents. This work initially concerned purely software 

systems, but the concept of autonomous system studied here emerges from the needs of the industrial IoT, 

focusing on systems of intelligent reactive agents that replace humans in complex organizations and 

facilities, such as realizing a cyber-physical system with human-level intelligence [4]. 

Replacing humans with machines suggests that the relevant test of intelligence cannot be just a textual 

question-and-answer imitation game, as in the Turing test. The kind of intelligence required here might be 

termed a replacement game, where the fact that a human has been replaced by an intelligent agent in a 

large scale multi-agent system or organization, complete with its entire rich environment, will be 

undetectable by a human tester. 

2.1.1 Functional characterization of an autonomous agent 

An autonomous system consists of components of predefined types, agents and objects, sharing a common 

environment and coordinated so that their collective behavior meets given global objectives. The objects 

themselves are usually dynamic physical systems, whose states can change either through the actions of 

agents or internally.  

An agent is a system (actually, a subsystem) that has the ability to monitor objects in its external 

environment and act based on their states, either alone or in coordination with other agents. The agent 

pursues a mission characterized by a set of specific goals that can change dynamically, depending on the 

state of its environment. 

The environment provides an infrastructure and mechanisms implementing coordination rules that 

govern the interaction between the components, i.e., the agents and objects. In particular, these rules 

determine the connectivity between agents, as well as the observability and controllability of objects. 
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Figure 1: Architecture of an autonomous agent for an autonomous vehicle, with its five key functions 

We propose an architecture for an autonomous agent, consisting of five key functions that work 

together to achieve autonomy. As we shall see, the architecture gives rise to a definition of autonomy as 

the capability of an agent to achieve a set of coordinated goals without human intervention, adapting to 

changes in the environment. 

The agent is a reactive system [5] that receives and processes sensory information from its 

environment, and computes commands, whereby actuators carry out actions that change the state of the 

environment.  

Figure 1 depicts an agent for an autonomous vehicle. Its internal environment is the vehicle whose 

direction and speed are controlled by the agent. In its external environment, we see three vehicles, one 

pedestrian and one traffic light. The agent processes the information concerning the environment, both 

internal and external, and issues commands to carry out the actions needed to achieve specific goals. The 

actions must take place within deadlines defined by the dynamics of the environment, in order to ensure 

that the goals are achieved in a timely manner. 

The agent combines five key functions, two of which are aimed at understanding environment 

situations (perception and reflection) and two carry out the decision-making (goal management and 

planning). The fifth function embodies the ability of knowledge management.   

The agent is also equipped with a knowledge repository, where it stores acquired knowledge that is 

useful for identifying and managing sensory information, in particular. Knowledge includes concepts 

concerning objects in the environment and their properties, as well as methods for decision-making. In the 

example at hand, the concepts of ۔car۔ ,ەpedestrianە and ۔lightsە are required in order to ۔understandە the 
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external environment. The repository for each of these concepts may contain information concerning their 

characteristic properties, so that the system achieves better predictability; e.g., it may know the maximum 

speed and acceleration of the specific type of car. 

The function of perception receives sensory information from the environment (images, signals) and 

analyses it by distinguishing between concepts, and possibly also relationships linking concepts that are 

stored in the repository. In our example, the sensory information from the external environment contains 

the three cars, the pedestrian and the traffic light, with corresponding information on their positions and 

kinetic states. Regarding the internal environment, the sensory information concerns the kinetic state of 

the vehicle, such as speed and acceleration. Perception is usually accomplished using neural networks, 

which are currently the best technology for this purpose.  

The perceived information is transferred to the reflection function, which is tasked with building a 

model of the external and internal environment of the system. This model has variables that represent 

states of the environment, such as the kinetic attributes of the obstacles and the state of the vehicle. The 

actions of the model are state changes that the controlled vehicle or the obstacles around it can perform. 

The model must be updated in real time, in order to reflect the dynamic state of the environment as 

accurately as possible.  

The decision-making module integrates two functions, using the environment model. The first of these 

performs goal management, by selecting from a set of pre-defined goals a subset of compatible goals in 

relation to the current state of the environment model. This is really the system's strategy. The system's 

goals include both negative and positive ones. Negative goals concern the need to avoid undesirable states, 

such as safety goals regarding collision avoidance. Positive goals concern the need to achieve desirable 

conditions, such as optimizing passenger comfort, fuel consumption and arriving at a destination location. 

We can also distinguish among various kinds of short-term goals, such as safety goals, medium-term 

goals, e.g., for maneuvering the vehicle in order to overtake other vehicles or drive through intersections, 

and long-term goals, such as completing an itinerary. Timely goal selection is crucial to system autonomy, 

because it is highly complex and requires computation times that must satisfy real-time response 

requirements. 

Goal management is complemented by the planning function, which, after selecting the goals, 

determines the system's tactics. For each set of selected goals, this function calculates a sequence of 

commands to the actuators, which carry out corresponding actions to realize the commands. Thus, with 

regard to the collision avoidance goal, it must control speed and direction by adequately combining 

braking, acceleration and steering wheel angle. For every kind of maneuver, the system must have at its 

disposal the appropriate tactics to achieve the corresponding goals. 

Finally, the fifth key function is knowledge management, which manages and updates the knowledge on 

the repository. Knowledge is updated through the creation of new knowledge, concerning (1) the 

environment, e.g. new concepts based on accumulated knowledge from the analysis of model data; and (2) 
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new goals for adapting to changes in the environment and changes in parameter values that are relevant to 

the choice between goals.  

The agent’s operation is cyclically repetitive. The cycle begins with perception, followed by reflection 
that updates the environment model. Then, decision-making takes place, possibly with the selection of 

new goals, and following up on the execution of tactics that were not completed in the previous cycle. 

These ۔leftoversە from the previous cycle can occur because the cycle’s duration must be short enough to 
achieve some short-term goals (for safe driving this might be on the order of a tenth of a second), while 

achieving long-term goals may take hundreds of thousands of cycles (e.g., to reach a destination). 

Obviously, when new goals are selected in a cycle, they must be compatible with those that have already 

been selected, but which have not yet been achieved. 

Thus, autonomous behavior of an agent, defined earlier as the ability to achieve its goals without 

human intervention, results from the combination of five mutually independent functions: perception, 

reflection, goal management, planning and knowledge management. This characterization allows us to 

distinguish between automated and autonomous systems. Automated systems such as thermostats or lifts 

do not need any of these functions. They receive digital data from their environment and each pursue very 

simple goals, achievable through static control policies. 

2.1.2 Autonomic complexity issues 

How difficult is it to build an autonomous agent? The previous functional characterization of autonomy 

guides us into distinguishing the following aspects of autonomic complexity. 

1. The complexity of perception characterizes the difficulty of interpreting the stimuli provided by the 

environment and of generating in due time the corresponding inputs for the agent's environment model. It 

has various sources, such as the ambiguity of the stimuli (admitting different interpretations) or their 

imprecision (fuzzy or noisy stimuli). Furthermore, this type of complexity is compounded by the volume of 

stimulus data needed to extract the relevant input information. 

2. The complexity of the reflection characterizes the difficulty of building a faithful and predictive semantic 

model of the agent's environment. This difficulty increases with two factors. The first is the lack of 

observability/controllability, which implies but partial knowledge of the agent's environment, and 

consequently limitations on building a faithful model. The second is the uncertainty about the agent's 

environment, which limits predictability. There are multiple sources of uncertainty, including time-varying 

load, dynamic changes due to mobility, and ۢburstyۣ events, as well as critical events like failures and cyber-

attacks. Clearly, reduced observability is a source of uncertainty. Nevertheless, the uncertainty cannot be 

completely resolved by simply improving observability. 

As explained above, the use of prerecorded knowledge can significantly improve situational awareness. For 

example, in self-driving cars, the reflection function can combine perception information with semantically rich 

prerecorded maps that show details of the road infrastructure, in order to build an even more accurate semantic model 

of the environment.  
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3. The complexity of decision-making concerns goal management and planning. For goal management it 

reflects the cost of computing maximal sets of compatible goals for a given state. This computation may 

involve both qualitative criteria, such as priorities, and quantitative criteria, such as optimization of physical 

quantities. For planning, the complexity depends on the type of goals and the complexity of the agent’s 
environment model. As explained, goals may be as simple as non-violation of a constraint and more 

complicated such as reachability of a condition or performance over a given time period. 

4. The complexity of knowledge management has two aspects. One arises from supporting situational 

awareness and decision-making, by providing appropriate knowledge. For example, for a given type of 

obstacle identified, to provide the reflection function with information from the repository about its relevant 

properties and enrich the semantic model; or to compute estimates of parameters used in the decision-

making process, such as delays, traffic density and risk parameters. 

The other aspect consists of discovering new knowledge needed to face entirely new situations, not 

foreseen at design time; e.g., situational awareness can be improved by the discovery of new concepts or 

decision-making can be enriched by new objectives adapting to a changing environment. 

2.2 Systems Engineering Complexity 

As already explained, the construction of autonomous agents involves difficult system engineering 

problems. We can define a concept of system complexity that characterizes the difficulty of building a 

system from components, autonomous or not [6]. System complexity is the product of two factors: (1) 

reactive complexity [7], which characterizes the difficulty of building the components constituting the 

system, and (2) architectural complexity [6], which characterizes the difficulty of achieving the desired 

coordination.  

We show that component and architecture characteristics place autonomous systems among the most 

difficult to build from a systems engineering perspective. 

2.2.1 Reactive complexity 

Reactive complexity characterizes the complexity of the interaction between a component, e.g., an agent or 

an object, and its environment. It is independent of the space or time complexity that measure the amount 

of computational resources required for its operation. 

We propose a classification of components based on their reactive complexity.  

The simplest kind of components are transformational components, where the relationship between 

input and output values is sufficient to characterize their behavior. The computation is performed in batch 

mode, without reference to any operating environment. Such components are often software systems 

ignoring real time constraints, with simple and well-defined environments. 

Streaming components compute functions on data streams, like encoders or signal processing systems. 

For a given input value stream, they compute a corresponding output stream. Their goals concern mainly 

functional correctness, with specific time-dependent properties such as latency. 
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Embedded components continuously interact with a physical environment to ensure global properties. 

These are typically mixed HW/SW systems, where real-time behavior and dynamic properties are essential 

for correctness. 

Cyber-physical components have the highest reactive complexity, as they seek a tight integration 

between computers and their physical environment [8]. They are embedded components integrating in 

their internal environment objects that are exclusively under their control. The description of their 

behavior requires both discrete and continuous variables representing the states of the integrated objects.  

Autonomous systems, such as self-driving cars, smart grids, and smart factories should be built from 

cyber-physical components, in order to meet the compelling needs for mobility and tight integration with 

electromechanical devices. 

2.2.2 Architectural complexity 

Architectural complexity reflects the difficulty of modeling, analyzing and implementing coordination 

mechanisms involved in the architecture of a system. Following a classification proposed in [6], we list 

below some representative cases of increasing complexity.  

Static architectures involve a fixed number of components, agents or objects, with fixed positions; e.g., a 

smart building system architecture with fixed microcontrollers and connections to electromechanical 

equipment. 

Parametric architectures have an arbitrary, initially known number of ۔plug-inە types of components for 
fixed coordination patterns; e.g., token ring architecture or cellular architecture. 

Dynamic architectures are parametric architectures with dynamic creation/deletion of instances of 

component types, such as client-server architectures. It should be noted that modeling and reasoning about 

the properties of dynamic architectures requires languages that allow parametric and generic description, 

such as higher order logics. 

Mobile architectures are dynamic architectures where, in addition to temporal dynamism, there is spatial 

dynamism: the coordinates of components can change dynamically, for example in mobile 

telecommunication systems. 

Self-organizing architectures are mobile architectures where the coordination rules of the components 

depend on their position in a structure. For example, for self-driving cars and swarm robots, the 

coordination of agents changes with time and space, but also depends on their position in an organization; 

e.g., platooning architecture or stigmergy architecture. 

2.2.3 Some conclusions  

The proposed classification clearly shows the systems engineering issues underlying the development of 

autonomous systems. These arise from the combination of physicality and computation, and include 

component heterogeneity and composability, and multi-scale and multi-dimensional modeling and 

analysis,   
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Self-organization is difficult to model and analyze because it involves three different types of 

dynamism: temporal, spatial and organizational. We already know that verification techniques successfully 

applied to the verification of static systems suffer from serious undecidability limitations when we move to 

parametric architectures, even if they have finite state components e.g. [9]. Thus, formal verification of the 

global properties of autonomous systems is not feasible. 

Note that dynamism and distribution raise additional concerns. Autonomous systems involving dozens 

of agents spanning a large area will not be free of undesirable emergent properties, even if each agent 

considered separately is shown to be safe. Consider the trivial deadlock caused by four uncoordinated 

vehicles waiting for each other at a four-way stop, strictly adhering to the right-of-way rule. Determining 

and preventing the emergence of hazardous situations at design time is a difficult problem. 

3 TRUSTWORTHY AUTONOMOUS AGENT DESIGN 

Trustworthiness is a transversal design issue. It is not limited to purely functional correctness. A system is 

deemed trustworthy if it behaves as expected despite design errors, hardware failures and any kind of 

potentially harmful interaction with its human and physical environment, including misuse, attacks, 

disturbances and any kind of unpredictable events [10]. 

In this section, we explain the limitations of current model-based approaches and explore the possibility 

of using them in the agent design flow for the development of those functions for which their application, 

if possible, would be highly beneficial. In particular, we discuss two underlying problems with model-

based decision-making and identify avenues for achieving trustworthiness in the face of hazards and 

incidents. 

3.1 Current Limitations of Model-based Approaches 

Model-based systems engineering has been successfully applied to develop systems with guaranteed 

trustworthiness, such as automotive, aerospace and production systems. There are many reasons that 

existing methodologies are not applicable to the development of autonomous systems. Rigorous 

methodologies, recommended by standards such as ISO 26262 for functional safety of road vehicles [11], 

are based on the V-model [12], a prescriptive framework that assumes a top-down system design and 

bottom-up validation flow. 

A strong assumption underlying these methodologies is that the system requirements are known from 

the start and can be clearly formulated and understood. Furthermore, the requirements must be 

decomposed into properties satisfied by the system components in a top-down refinement process. 

This assumption does not seem realistic for our purposes, even for non-autonomous complex systems, 

since such systems are not designed from scratch; they are often built by incrementally modifying existing 

systems and largely reusing components. In fact, projecting global system requirements into the 

components of a system architecture is a non-trivial problem. Furthermore, the V-model assumes a 

possibility of compositional validation after the completion of the implementation and that the correctness 

of the system can be established by gradually moving from the components to the overall system 

validation. 
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Post-design verification is not realistic for complex systems, where it is important to detect design 

errors as early as possible. For these reasons, modern software engineering has moved away from the V-

model to so-called agile methodologies, which consider that coding and design should go hand in hand: 

designs should be modified to reflect adjustments to requirements [13]. However, the problem of finding 

rigorous methodologies that escape the V-model straitjacket and meet current needs remains entirely 

open. 

For autonomous systems, not only is the V-model not applicable, but the use of non-explainable ML 

components prevents the full application of model-based methodologies. These limitations are particularly 

reflected in the current lack of standards for autonomous vehicles.  

As explained earlier, a compromise would be to adopt a hybrid approach that integrates model-based 

decision-making modules with data-based components. The construction of such modules could build on 

the well-established results of model-based adaptation, which would also provide high confidence 

guarantees. 

3.2 Model-based Decision-making 

We discuss two key issues for model-based decision-making. The first is hierarchical decision-making and 

the second is the representation of the external world using maps. 

3.2.1 Hierarchical control architecture  

The decision-making of an autonomous agent involves managing at least three different types of goals. 

Short-term goals, which are subject to strict real-time and safety constraints. They require the system to 

stay away from dangerous states. For example, for an autonomous vehicle, they would aim to avoid 

collisions by keeping their distance from obstacles within certain limits or by following a pre-defined 

trajectory. For smart grids, these goals mostly concern robustness; i.e., the ability to provide stable and 

continuous energy flows. 

Medium-term goals, which concern the transition between predefined operating modes, in order to 

adapt to dynamically changing situations. For an autonomous vehicle, these goals require performing 

maneuvers such as overtaking or crossing intersections of various types. For a smart grid, they are about 

supporting the integration of renewable electricity and the system’s ability to reconfigure itself to adapt to 
changing demand. Note that medium-term goals imply dynamic system reconfiguration and adaptability 

under specific time constraints. 

Long-term goals, which are designed to satisfy various types of non-critical properties, including 

optimizing criteria or meeting given target conditions. For an autonomous vehicle, this might be 

completing a trip by reaching a destination, or optimizing fuel consumption. For a smart grid, it may be 

asset optimization, cost reduction, and operational efficiency. 

It should be noted that medium-term goals are the most difficult to achieve because they are subject to 

safety and system controllability requirements under the uncertainty that results from unpredictable 
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environments. In contrast, short-term goals usually lend themselves to formalization and can be achieved 

by applying, e.g., well-established control theory and technology. This is typically the case for trajectory 

tracking, collision avoidance or network robustness. On the other hand, long-term, non-time-critical goals 

have less stringent requirements, and can be met using a variety of strategies. 

This distinction between goals leads naturally to a hierarchical control paradigm for autonomous 

agents. The lowest level is responsible for achieving short-term goals, the second involves tasks aimed at 

achieving medium-term goals, and the third level deals with achieving long-term mission goals. Clearly, 

the three levels operate on increasing time scales as one moves up the hierarchy. 

The adoption of such a hierarchical control paradigm is advocated by the seminal work at NIST [14,15], 

which proposed the 4D/Real-time Control System (RCS) reference architecture described in a series of 

methodological and technical papers. Nevertheless, to our knowledge, it is not clear that 4D/RCS has ever 

been fully applied, beyond modest demonstrations. Recent publications, e.g., [16, 17, 18, 19], address the 

analysis of such architectures, but we still lack conclusive results as to the implications and risks of 

applying the principle to real-world autonomous systems. 

The main difficulty in implementing the hierarchical control principle lies is the timely and harmonious 

coordination of the three levels, since control involves a complex top-down and bottom-up flow realizing 

the interaction of processes with different underlying dynamics. The top-down flow ensures consistency 

and controllability while the bottom-up flow ensures observability. In addition, the dynamic change of a 

goal at one level must be consistent with the goals pursued at other levels. For example, if the execution of 

a maneuver requires acceleration, this must be consistent with keeping the vehicle on its intended 

trajectory. 

Note that an underlying assumption of this approach is that agent autonomy is realizable as a dynamic 

composition of a set of basic tasks, each allowing the achievement of a specific goal. It is analogous to, and 

consistent with, the idea that human autonomy results from the intelligent combination of skills. For 

example, the ability to drive is the combination of skills involving keeping a safe distance from obstacles, 

maintaining a certain trajectory, performing various maneuvers, etc. 

An advantage of the hierarchical control paradigm is that it is possible to analyze and verify separately 

that each subsystem allows achieving the corresponding goal. For example, we can prove that the collision 

avoidance system or the overtaking protocol are correct under certain integration conditions applied at the 

agent architecture level. Of course, it remains to be demonstrated that the desired agent behavior can be 

achieved by properly integrating a set of basic goal-achieving tasks into the hierarchical architecture. 

Often, the integration conditions we want to assume are ones relevant to the AI/ML parts of the system 

we are developing. Given that one cannot verify these parts (in the formal mathematical sense), we could 

advocate ۔relative verificationە, which means that we verify the non-AI components of the system (or 

portion thereof) that we want to verify, while assuming the correctness of the AI parts. This yields the 

 of the system. Of course, this necessitates somehow defining what we even mean by ەrelative correctness۔

an AI/ML component being correct, which would presumably be a probabilistic statement about the 
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outcomes. However, from a purist’s stand, this is the best kind of verification one can strive for in the 

context of an autonomous system with components of both kinds. 

3.2.2 Map-based representation of the environment 

Autonomous systems are overwhelmingly distributed systems too, with agents deployed in a variety of 

spatial locations within some physical environment. As explained, the behavior of an agent depends 

strongly on the physical context in which it evolves. Decisions are made based on a semantic model of the 

environment, which takes into account the relevant geometric features and the presence of objects or 

agents therein.  

Thus, an agent’s semantic model is an abstraction of the physical environment as perceived by the 
sensing devices. It can be represented by a suitable map, enriched with observable state attributes of 

objects or agents in the agent's neighborhood. 

Nevertheless, relying exclusively on models built from local sensory information is often not sufficient 

for effective autonomy. To manage medium and long-term goals and anticipate external changes, a 

broader view of the environment is needed. For example, autonomous cars can use maps stored in a 

repository enriched with online traffic information, which would be similar to, but vastly richer than, the 

maps used in current car navigation systems. These maps are essential to indicate long-term goals such as 

the route taken by the vehicle or to anticipate situations beyond the agent's visibility. For example, 

knowing the geometric characteristics of a nearby roundabout allows for better preparation of the 

corresponding maneuver. 

Consistent with the distinction between the three types of goals, the external environment maps we 

need should themselves be designed at three different levels of abstraction. High-level maps are used to 

represent long-term goals, such as the entire mission goals, and provide a description of the area where the 

autonomous agent can operate; e.g., for autonomous vehicles, a map of the road network where routes can 

be indicated. 

The middle-level maps describe the environment at a scale that provides the details necessary to 

implement the medium-term goals. These involve features of the environment that require a specific agent 

control policy. For autonomous vehicle maneuvers, we need maps providing detailed geometric 

descriptions of roads with their lanes, and of intersections with their entrances and exits and associated 

traffic rules.  

Finally, the low-level maps should provide a detailed description of the current external environment 

with all relevant information for efficient decision-making. This description can be obtained by merging 

sensory information and existing detailed maps, and must be updated in real time. 

The coherent integration of the three modeling levels raises some non-trivial issues related to the 

connection between the concrete map representations obtained by the fusion of sensory information, and 

the available symbolic and semantically rich pre-existing map representations. 
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For effective situational awareness, the perception function must be able to distinguish not only simple 

objects, but also relevant object models, and for this, the use of pre-existing map models may be required 

too. For example, the autopilot of an autonomous vehicle must be able to unambiguously identify different 

types of intersections and their associated signaling equipment. 

There have been extensive efforts to define adequate semantic map models for autonomous vehicles. 

These include proposals for the standardization of semantically rich map models [20, 21]. Other work 

focuses on formalizing maps using ontologies and logics and applying reasoning mechanisms to check the 

consistency of descriptions and their accuracy with respect to desired properties [22, 23, 24, 25]. 

In summary, building faithful semantic models for autonomous systems is a challenging problem 

arising from the fact that autonomous systems will be deployed in physical environments and their 

interactions will take place there. This requires a multi-scale representation of the environment in the 

form of maps reflecting the scope and granularity of different objectives. Moreover, it poses the problem of 

linking in real time the concrete knowledge generated by machine learning techniques on the perceived 

agent’s environment with pre-existing and semantically rich symbolic knowledge. 

3.3 Design for Dependability 

Critical system development involves design for dependability, which aims to ensure that if certain 

assumptions about the system's nominal behavior are violated for any reason, the system will be resilient 

and can avoid or circumvent hazardous situations. Dependability is not a black or white concept, in 

contrast to correctness with respect to a set of well-defined specifications. It takes into account failure 

rates of physical components, rare events, system misuse and malevolent actions, and is usually 

characterized by a set of probabilistic attributes such as reliability, availability, maintainability, etc. [26]. 

Design for dependability involves a three-step flow: risk analysis, risk mitigation and risk assessment.  

Risk analysis aims at providing answers to the following questions: What are the consequences of 

system hazards, what can go wrong, and how likely are these to occur [27]. Briefly, there is a large number 

of risk analysis techniques available to study the links between the different causes of risk and their 

potential effects. They cover a wide range of methods and practices, from the simplest, such as fault tree 

analysis [28], to the most sophisticated, involving architecture analysis, such as STPA [29] or data flow 

analysis, such as FPTC [30]. The causes of risk can be "internal", such as design errors or software bugs, or 

external, due to human misbehavior (malicious or not) or natural causes, like failures or disasters. Their 

effects can be hazards compromising the safety, the security or the performance of the system. 

Risk analysis cannot be fully automated, and it requires common sense engineering skills and a 

thorough understanding of the system’s behavior and its interaction with the environment. It requires 
good systems engineering expertise, and obviously it can be tedious, as it requires thorough case-by-case 

analysis. 

Risk analysis techniques, successfully applied to automated systems operating in aircraft or factories, 

are difficult to apply to autonomous systems due to the complexity and unpredictability of that latter’s 



 

 
ACM Trans. Embed. Comput. Syst. 

physical and human environment. For example, a failure typology for light vehicles published in a DOT 

document [31], lists 37 cases, many of which are difficult to analyze because they are the results of 

imponderable events or human and animal actions 

Existing risk mitigation methods suffer from similar limitations. They involve the systematic design of 

mechanisms to address the hazards/threats identified in the risk analysis by implementing the so-called 

DIR (detection, isolation, recovery) mechanisms designed to ensure resilience [32]. For each type of hazard, 

a detection mechanism is implemented with associated isolation techniques to contain its effect until a 

mitigation mechanism can take over. 

Isolation techniques are of a variety of types, ranging from partitioned architectures, so that the 

memory and processing time of one partition is not affected by another faulty partition, to firewalls, 

cryptography and privileged access management. Similarly, recovery techniques range from the use of 

massive redundancy in hardware architectures, such as TMR, to rollback or roll-forward for software 

systems, to reconfiguration techniques. 

As already explained, these techniques are enumerative in nature and imply high combinatorial 

complexity for unpredictable environments. In general, their application is prohibitive for autonomous 

systems. It can be considered for risks that are easy to identify and characterize, such as those caused by 

failures in electromechanical systems, but these represent only a small fragment of the risk factors. For 

example, [33] identifies nine categories of risk for autonomous vehicles, including 176 different types of 

hazards.  

For hazards that are difficult to predict and assess, the tendency is not to try to detect and mitigate risks 

through dedicated mechanisms statically at design time, but rather to achieve resilience using assurance 

mechanisms at runtime. 

Figure 2 illustrates a materialization of this idea with a runtime assurance architecture [34]. This 

architecture involves a trusted Monitor that detects deviations from the nominal behavior of an untrusted 

system, specified by a set of essential system properties. The Untrusted System can be of any type, such as 

an autonomous agent or a neural network, which controls some Facility.   
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Figure2: Run-time assurance architecture 

The Trusted Monitor receives the output of the Untrusted System and is able to detect online any 

violation of the essential system properties. Upon detection of the offending event, it triggers a switch that 

replaces the output of the Untrusted System with the output of a Trusted System that can take over and 

provide some minimal service, so as to keep the Facility safe. When the Trusted Monitor diagnoses the 

recovery of the Untrusted System, it prompts the switch to swap outputs back and resort back to normal 

behavior. 

Note that the runtime assurance architecture extends the Simplex paradigm used in fault tolerant 

systems. The Simplex architecture differs from this in that when a hazard is detected, the system is 

directed to a fail-safe state and shuts down [35]. 

Runtime assurance is also consistent with the idea of hybrid control for collision avoidance, which has 

been proposed for self-driving cars, where an unreliable optimized controller is monitored by a provably 

safe controller [36, 37]. 

The application of the runtime assurance paradigm involves considerable technical difficulties that 

should not be underestimated, and it requires (like several other ideas in this paper) non-trivial further 

research. Although the Untrusted System is treated as a black box, the development of trusted components 

must be model-based and then properly validated. Note that if the essential properties are formalized in 

linear temporal logic, it is possible to use well-established online verification techniques to automatically 

generate the Monitor [38, 39]. 

It is important to realize that detection of property violation must occur early enough so that the 

Trusted System can still mitigate the hazard. This requires a deeper understanding and analysis of the 

Facility’s dynamics in order to anticipate the hazard and adequately counter it by mitigating its effect 
online.   

4 AUTONOMOUS SYSTEMS VALIDATION   

There is a significant gap between the state of the art in system validation and verification, and the 

validation needs of truly autonomous systems. How can existing results be integrated and extended into a 
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rigorous validation methodology aimed at providing conclusive trustworthiness evidence? We provide 

elements of an answer by analyzing various aspects of the validation problem and related methodological 

and technical issues. 

Simulation and testing seem to us be the only feasible way for validation, especially when we consider 

an entire autonomous system. And this is regardless of the approach used for agent development – model-

based or data-based. In the industrial world, there is an increasing awareness of the importance of 

simulation techniques for validation purposes, especially for autonomous vehicles.   

For self-driving cars, a sufficiently low risk ratio per simulated mile is currently considered a near 

guarantee of safety [40]. However, this argument is not defensible, for the simple reason that not all 

simulated miles are equally effective. It is necessary to explain how simulated miles relate to "real miles". 

This requires a deeper understanding, through rigorous modeling, of the extent to which all relevant 

system configurations have been explored. 

Among other things, we discuss what would be required of a solid and useful validation methodology, 

arguing that it must rely on model-based criteria, by carefully and rigorously exploring a meaningful and 

relevant sample of system configurations. 

4.1 Simulation and Testing Architecture 

Figure 3 describes a general simulation and testing architecture for validating autonomous systems against 

given specifications, suitably formalized as safety properties or bounded accessibility properties. The 

architecture integrates three tools: i) a Simulator; ii) a Scenario Generator; and iii) a Monitor.  

The simulation is driven by actions generated by the Scenario Generator. Its runtime coordinates the 

execution of an autonomous system model and generates runs that are then verified online by the Monitor. 

The model should ideally consist of two entities: 1) a world model that includes a map representing the 

global static environment, as well as the system agents with their state attributes; 2) behavioral models of 

the agents and their possible interactions.  

The model thus defines a dynamic system involving agents and objects that interact in a static 

environment represented by a map. The states of the agents and objects are defined by sets of attributes 

concerning their internal state and their kinetic state. However, unlike static systems whose global states 

are tuples of states of their components, the global states of autonomous systems are configurations 

involving not only the states of their components, agents and objects, but also contextual information 

depending on their position on the map [25]. This information is needed in order to determine the possible 

interactions between the components, as well as the interactions between the components and their 

physical environment.  
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Figure 3: Simulation and test architecture for validating autonomous systems  

For example, a configuration of an autonomous transport system contains the states of its vehicles and 

their positions on a map with its signaling equipment. Thus, the behavior of a vehicle depends on its state 

but also on the constraints induced by the possible interactions it may have with other vehicles, and by the 

interpretation of the physical environment with the associated traffic equipment. 

The simulator operates in a cyclic manner. At the beginning of a cycle step, it provides each agent with 

the current relevant information about the configuration of its neighborhood, as well as requests to 

execute control actions of a scenario. At the end of the step, it calculates the new configuration resulting 

from the state changes reported by the agents. We assume that the Simulator exports to the other tools 

runs of system configurations as well as implementations of basic predicates, variables, and actions, via an 

interface, say an adequately defined API. 

A central and crucial part of this setup is the Scenario Generator, which applies a test strategy that 

drives the entire simulation process. The scenarios it generates are coordinated sequences of actions, to be 

executed by the agents in the Simulator. Thus, scenarios play the role of test cases intended to drive the 

simulated system towards specific configurations, for example to explore high-risk configurations, or to 

meet specific coverage criteria, as discussed below 

The Monitor continuously receives the generated runs and applies runtime verification techniques to 

check online that they meet the given specifications. In addition, it can provide diagnostics and key 

performance indicators used by the Scenario Generator in its testing strategy. As explained, for any 

monitored run, the specifications express either safety, e.g., that all configurations of the run satisfy some 
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safety condition on configurations, or bounded reachability, e.g., that there exists some configuration of 

the run that satisfies a desirable condition.  

The architecture is an adaptive testing environment: using common terminology, the Simulator 

corresponds to a Unit under Test, the Monitor is an Oracle and the Scenario Generator plays the role of a 

Test Case Generator. 

4.2 Requirements for Simulation 

We are of the unequivocal opinion that simulation is of paramount importance for validation of 

autonomous systems, and that it covers a wide variety of aspects – from the purely technical to the 

theoretical. We see three main requirements for a good simulation: 

1. Realism: The agent's behavior and environment must look real, involving suitable graphics that relay the 

situations and the dynamics thereof in a way that is true to reality. For modest examples of realistic-looking 

simulation models for biological systems see, e.g., [41, 42]. 

2. Semantic awareness: From the description of the simulated system model, it should be possible to extract a 

semantic model, including a well-defined notion of system configuration. This allows one to define 

predicates on system configurations that will be used by the monitor to verify online system properties. Note 

that semantic awareness implies that the simulated models respect fundamental properties of time and space, 

because configurations have time and space attributes. For example, if there are two different runs leading 

from one configuration to another, the travel time and distance along these sequences must be comparable. 

3. Multiscale/multigrain modeling: We have identified at least three different levels of modeling abstraction 

corresponding to the different types of goals pursued. In order to analyze and validate the behavior of the 

system with respect to the properties relevant to these goals, it is important to be able to adjust the 

granularity of the simulation appropriately. Coarse-grained simulation is sufficient for mission-related 

properties while fine-grained simulation is essential for the lower level dynamic properties of an agent, 

taking into account the details of the physical space. 

To meet the above requirements and to cope with the complexity of the simulated systems, we need 

specific execution infrastructures such as HLA or FMI, integrating the execution of specific simulation 

engines at different space and time scales [8].  

Note that realism and semantic awareness are not easy to reconcile. Industrial simulation environments 

often favor realism because they are built on top of game platforms that have not been developed with 

semantic awareness in mind. Obviously, the configurations of the exported semantic model must take into 

account only essential aspects of the environment. They can ignore the details that are not involved in the 

formalization of the properties to validate, even if these may affect the system’s dynamics and hence the 
results of the simulation. For example, weather conditions may have an impact on vehicle dynamics while 

they are not relevant for the expression and validation of basic traffic rules. 

4.3 Scenario Generation and Testing 

The Scenario Generator receives configuration runs exported by the Simulator and applies rules in order to 

control the evolution of the simulated system, e.g., to explore particular situations or to enforce given 
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properties. In practice, scenarios give rise to sequences of control actions that modify parameters of the 

agents in the simulated system, and hence their states. For instance, if the agents are vehicles, the 

parameters can be their initial positions on the map, or their itineraries, 

Obviously, the scenarios must be compatible with the behavior of the agents specified in the simulator 

and their operational context. For example, if a scenario requires a vehicle to accelerate, this must be 

compatible with its collision avoidance policy. In other words, the Scenario Generator must apply 

sequences of actions gradually and carefully, following an adaptive policy that takes into account the 

configuration of the simulated system at each step. 

There has been a large amount of work devoted to the study of scenarios for autonomous driving 

systems. This includes the Open-SCENARIO proposal [43] for the description of scenarios for driving and 

traffic simulators, as well as papers on the use of scenarios in testing and validation methods. 

The work in [44] proposes a visual formal specification language for capturing scenarios, termed LSCs 

(live sequence charts), which was inspired by MSCs (message sequence charts). Possible applications of 

this language for the specification and testing of autonomous vehicles were proposed in [45]. See also the 

executable version of this language, in [46]. The work in [47] presents an approach for automated 

scenario-based testing of the safety of autonomous vehicles, using metric temporal logic. Finally, the 

probabilistic language Scenic [48] for the design and analysis of cyber physical systems uses scenarios to 

control and validate simulated systems of self-driving cars. 

Is it possible to extend conventional testing techniques to autonomous systems? Testing strategies 

should aim to optimize criteria, such as coverage, or to test functional properties. While for software 

systems coverage can be defined as the ratio of source code exercised during the execution of test 

sequences, it is not clear how a similar criterion can be defined for autonomous systems. One of the main 

reasons for this is the non-availability of a comprehensive definition of the requirements and possible 

scenarios, from which to derive coverage criteria. Furthermore, functional testing assumes the existence of 

system behavioral models. 

4.4 Monitoring and Validation  

The Monitor applies online verification techniques to check whether the configuration runs generated by 

the Simulator satisfy the monitored properties. These characterize the evolution of agents on a map, which 

plays the role of a kind of "global resource" shared by the agents. 

The validation of autonomous systems has motivated work on logics and associated verification 

techniques. Nevertheless, existing results on the validation of reconfigurable dynamic systems can be 

specialized to autonomous systems, for example [39, 49].  

The work in [50] proposes a formalization of traffic rules in linear temporal logic and applies runtime 

verification to check that the maneuvers of a high-level planner are consistent with the rules. In [51, 52], a 

set of traffic rules for highway scenarios is formalized in Isabelle/HOL. It is shown that traffic rules can be 

used as requirements to be met by autonomous vehicles, and a verification procedure is proposed. In [53], 
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a formalization of traffic rules for uncontrolled intersections is proposed in first-order logic, and the rules 

are applied by a simulator to control traffic at intersections. 

Consistent with prevailing approaches, the specification language we need can be a linear first-order 

temporal logic generated from a set of appropriately chosen atomic propositions. These are predicates 

expressing relations between the states of components, agents or objects, or relations between components 

and their static environment. For example, for autonomous vehicles, we need distance predicates, e.g., 

constraints on the distance between two vehicles, or location predicates, e.g., a vehicle should wait in front 

of a stop sign [25]. The API of the Simulator must provide implementations of the atomic propositions that 

can be evaluated on exported system configurations. 

Note that quantification is necessary, in order to express genericity and parameterization of variables 

on agent domains or static environment structures. In particular, it allows one to express properties that 

hold for all agents or for all environment models of a certain type, or, dually, for at least one thereof. For 

example, traffic rules for roundabouts involve a universal quantification on vehicles and on this type of 

junction.  

Checking that a configuration run meets a given specification involves two steps. The first deals with 

the elimination of quantifiers in the formulas, taking account of the instances of the agents and the 

context. The second step deals with the generation from the resulting propositional temporal logic formula 

of a corresponding finite state automaton that characterizes the runs satisfying the formula and can be 

used for online verification of the observed behavior [38, 39, 49, 50]. 

To reduce the complexity of the space of configurations to be explored, we need structuring criteria 

inducing useful property-preserving abstractions. One solution to deal with this complexity is 

metamorphic testing [54], which can allow a drastic reduction of the number of test cases to be considered. 

It consists in defining "metamorphic relationships" on configurations, and by extension on scenarios too. 

Intuitively, if two scenarios are related, they both satisfy the same set of properties. Thus, executions 

conducted by related scenarios from the same initial configurations should be indistinguishable by the 

Monitor. Thus, testing but one scenario per class can result in coverage guarantees for all its scenarios. 

Another approach applied to reconfigurable systems [39, 49], consists of associating with a 

configuration a hypergraph representing the possible interactions between its components, objects or 

agents. Given a configuration, the vertices of the corresponding hypergraph are the components involved 

in the configuration and the hyper-edges represent the possible interactions between the components. 

Intuitively, a set of components can interact if their behavior is constrained by the same property. It is 

therefore possible to group together configurations that have the same associated hypergraphs if the states 

of their components are ۔closeە enough. For example, two configurations involving three vehicles traveling 

one after the other on a lane have the same hypergraph induced by the traffic rules, and they can thus be 

considered ۔equivalent" under certain conditions on their kinematic states. This simplification, used for the 

efficient monitoring and analysis of reconfigurable systems [55], can be advantageously applied to 

autonomous systems too, as proposed in [25]. 
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5 THE WAY AHEAD 

Success in achieving widespread acceptance and deployment of autonomous systems will depend on our 

ability to adequately address not only the multifaceted scientific and technical challenges, but also the 

related societal and ethical issues, striking the right balance in the symbiosis between humans and 

machines.  

5.1 Moving from Automated to Autonomous Systems  

How can we increase the degree of autonomy in a design and what are the underlying technical 

challenges? The proposed functional characterization of autonomous agents provides some insights into 

this issue, which is at the heart of the transition from automation to full autonomy. 

SAE International proposes a six-level hierarchy of driving automation, ranging from manual to fully 

autonomous systems [56]. The first three levels, 0 to 2, characterize degrees of automation, where a driver 

is ultimately responsible for driving the vehicle, possibly assisted by advanced driver-assistance systems 

(ADAS). In levels 3 to 5, the autopilot is responsible for driving the system. Level 3 requires supervision of 

the autopilot by a human driver, level 4 allows autonomous driving in geo-fenced environments, while 

level 5 provides full autonomy without restriction. 

This hierarchy suggests that the difficulty of moving from one level to another may be progressive. 

However, there is a major gap between automation and autonomy. At levels 0 to 2, ADAS systems operate 

under the control of the driver and can be turned on and off at any time, except in very specific critical 

situations. In contrast, at levels 3 to 5, the autopilot is responsible for driving, which is no small difference 

at all! ADAS cannot merely evolve progressively into autonomous driving systems, because automation 

and autonomy are two very different issues, as explained in Section 2. 

In addition, the supervision of vehicles on autopilot prescribed by level 3 is proving to be a very risky 

idea. Safe collaboration between autonomous systems and humans raises symbiotic autonomy issues that 

go far beyond traditional HMI. When the autopilot proactively requests human intervention, the human 

must have the information and the time to understand the situation and act appropriately. Furthermore, if 

the supervisor realizes that something is wrong, disengaging the autopilot or overriding the machine's 

decisions should result in situations controllable immediately by the human. 
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Figure 4: The automation/autonomy space  

Finally, there is a significant gap between level 4 and level 5. Indeed, most of the complexity factors of 

autonomy stem from the lack of confidence in the perception function and the unpredictability of the 

external environment. Level 4 autonomy minimizes the risks associated with these factors. Driving in geo-

fenced environments greatly simplifies the perception problem due to far greater predictability and vastly 

fewer possible interactions and configurations. Furthermore, for such environments, extensive 

instrumentation can be used to improve the quality of perception. For example, platooning of trucks on 

highways seems to be feasible in the near future. 

Figure 4, which is consistent with, and in fact reflects, our characterization of autonomy, shows how 

varying degrees of autonomy can be achieved through the interplay of four parameters: 1) complexity of 

situation awareness; 2) complexity of decision-making; 3) absence of human intervention in operating the 

system; and 4) complexity of knowledge management. The grey intervals delimit pure automation: the 

environmental stimuli are digital data and the operation of the system under human control, possibly 

assisted by automated systems. 

The degree of autonomy increases as one moves from the automation zone away from the origin, as 

when, for example, one moves from digital sensory data to quality data, and then to general data that may 

be ambiguous and/or vague. Autonomy also increases as one moves from human to machine control, with 

the human remaining in the loop, with or without the possibility of intervention. 

When the operation of the system is controlled by the machine, decision-making concerns management 

at the level of goals, or even the entire mission. Finally, autonomy is reinforced by the ability to manage 
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knowledge, as we move from fixed knowledge to the case where the system generates knowledge, creating 

in the process new concepts and objectives. 

In conclusion, although there is a clear distinction between automation and autonomy, there are 

different ways to increase the autonomy of a system. We note that similar ideas have been presented in 

[57, 58] to study the degrees of autonomy of assistants. 

5.2 Matching Human Situation Awareness 

Humans are far superior to machines in understanding complex situations, simply because they possess 

common sense knowledge and reasoning [59]. The human mind understands situations by combining: 1) 

bottom-up reasoning, from the sensor level to concepts; and 2) top-down reasoning, from concepts to 

perception. It is equipped with a semantic model of the world built progressively since our birth. Common 

sense knowledge relies on this model to understand natural language and to deal with real life situations. 

On the other hand, machine learning only goes from the bottom upward. For example, it has been 

reported that an autopilot mistook the moon for a yellow traffic light [60]. This type of error could never 

happen to humans, simply because sensory information is contextualized using common sense logic 

(traffic lights cannot be in the sky!). 

Similarly, when we see a stop sign partially covered with snow and decide that it is indeed a stop sign, 

it is because, despite the snow, we are able easily to verify that the image matches a conceptual model of a 

stop sign with its properties (size, color and location). On the other hand, a neural network must be trained 

to recognize stop signs in all possible weather conditions. This explains the difference between humans 

and neural networks in their speed of knowledge acquisition. 

Furthermore, humans outperform machines in that they can effectively manage rare events and 

emergent situations. They can be creative/inventive and are not limited to managing a predefined number 

of goals.  

In summary, for machines to match human situational awareness, they must be able to combine 

concrete sensory information with an extremely rich body of symbolic knowledge. The challenge is 

therefore to develop "self-learning systems" capable of progressively building semantic models of their 

environment by combining learning and reasoning techniques. This is probably the most difficult problem 

to solve, as shown by the poor progress made so far in the semantic analysis of natural languages. 

5.3 Regulations and Ethical Issues 

Trustworthiness is obviously a technical concept, but it also has a subjective and social dimension. Since 

we all live in one modern society or another, we cannot ignore the role of institutions that contribute 

directly or indirectly to shaping public perceptions on what is true, right, safe, etc. The certification of 

critical systems has mostly remained the prerogative of independent agencies according to well-founded 

standards that require conclusive evidence that is based on models [61] 

The acceptance of autonomous systems will depend on our decisions about when to trust them and 

when not to. Making these choices wisely depends on two factors. The first is our ability to define 
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standards and regulations for autonomous systems based on robust and transparent evaluation criteria. In 

our view, the current trend toward self-regulation and self-certification should be a temporary stopgap 

measure rather than a permanent answer to the quest for trustworthiness. The development of the new 

standards will depend on the evolution of the state of the art and the willingness of authorities to exercise 

effective control for the protection of users. 

The second factor is a heightened social consciousness and an ever-expanding sense of political 

responsibility. In general, public opinion is becoming less forgiving towards system failures than towards 

human errors, such as accidents caused by an autonomous car versus accidents caused by a human driver. 

Even if autonomous systems can eventually be made as trustworthy as humans, their acceptance to 

perform highly critical tasks will always be questioned.  

It would be good to apply the precautionary principle that already underlies European Union laws and 

regulations: when computers are part of critical decision-making processes, we must ensure that their 

judgment is safe and fair [62]. Such a principle should be enshrined in the laws and regulations governing 

the development and deployment of autonomous systems. 

The ethical question raised by the unregulated use of autonomous systems is whether we accept that 

critical decision-making processes rely on machine-generated knowledge that allows predictability 

without understanding. We believe that the threat is not that computer intelligence will come to surpasses 

human intelligence and that computers could take over human societies by plotting. The real danger 

comes from the massive replacement of responsible and accountable human operators in critical decision-

making processes, by computing devices and software.  

Let us hope that we will not buckle under the pressure of economic interests, and based on doubtful 

performance benefits will be tempted to grant decision-making power to autonomous systems without 

rigorous and strictly founded guarantees,. 

5.4 Towards a New Scientific and Engineering Foundation 

We have explained that the autonomy vision involves important systems engineering issues that are not 

directly related to achieving intelligent behavior. Furthermore, monolithic end-to-end solutions based on 

artificial intelligence are not likely to be accepted because they preclude trustworthiness guarantees by 

taking an explanation-lacking, verification-resisting approach. Instead, hybrid approaches are more viable 

because they can leverage a robust body of knowledge for safe and effective decision-making combined 

with the effectiveness of AI-based techniques. 

Since we have claimed that overall system validation is only possible through simulation and testing, it 

is important that we develop a sound theoretical and methodological framework for trustworthiness 

assessment. This framework will be empirical and similar to those used for knowledge development in 

physical sciences, although there are important differences between the physical world and the virtual 

world of system models. 
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Will the model-driven paradigm become obsolete due to the increasing diversity and complexity of 

autonomous systems? It is likely that we will not be able to apply rigorous development techniques to 

achieve the same level of confidence as for airplanes, e.g., 10
-9

 failures per hour of flight. In practical terms, 

this means that we should probably limit our ambitions for total autonomy and seek symbiotic autonomy 

schemes [63] that mark an appropriate division of labor between man and machine. Unless we devise new 

paradigms for system development, such as the use of correct-by-construction techniques, which would 

provide confidence guarantees without resorting to explicit system modeling.  

Another crucial problem that we encounter in different contexts is to bridge the gap between symbolic 

knowledge and concrete information. In particular, this arises when we try to link symbolic models of the 

environment to concrete models obtained from the analysis of sensory information.  

This problem motivates many works on explainable AI. The idea is to extract from a neural network 

mathematical models explaining its behavior. This is theoretically possible for a neural network, given its 

structure and the mathematical function that characterizes the input/output behavior of its nodes. In 

particular, for feed-forward networks this is achieved by propagating the input values along each layer to 

compute the output values. It is clear that the difficulty of this propagation depends on the type of 

activation function of the nodes. 

Promising results for ReLU networks, for example [64, 65], pave the way for formal verification as well 

as robustness and sensitivity analysis. If the inherent complexity issues can be overcome, we can expect 

better integration of data-based and model-based approaches in hybrid design flows. 

Addressing the challenge of autonomy would be a major step in bridging the gap between machine and 

human intelligence. To achieve this, it is not enough to combine existing results from autonomous 

computing, adaptive systems and autonomous agents. It will require a new scientific and technical 

foundation, which we have termed Autonomics, and which will no doubt require time and effort to build. 
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