

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1539-9087/2022/1-ART1 $15.00
http://dx.doi.org/10.1145/3545178

ACM Trans. Embed. Comput. Syst.

Trustworthy Autonomous System Development

JOSEPH SIFAKIS

Verimag Laboratory, Joseph.Sifakis@univ-grenoble-alpes.fr

DAVID HAREL

Weizmann Institute, dharel@weizmann.ac.il

Autonomous systems emerge from the need to progressively replace human operators by autonomous agents in a

wide variety of application areas. We offer an analysis of the state of art in developing autonomous systems, focusing

on design and validation, and showing that the multi-faceted challenges involved go well beyond the limits of weak

AI. We argue that traditional model-based techniques are defeated by the complexity of the problem, while solutions

based on end-to-end machine learning fail to provide the necessary trustworthiness. We advocate a hybrid design

approach, which combines the two, adopting the best of each, and seeks tradeoffs between trustworthiness and

performance. We claim that traditional risk analysis and mitigation techniques fail to scale, and discuss the trend of

moving away from correctness at design time and towards reliance on runtime assurance techniques. We argue that

simulation and testing remain the only realistic approach for global validation, and show how current methods can be

adapted to autonomous systems. We conclude by discussing the factors that will play a decisive role in the acceptance

of autonomous systems, and by highlighting the urgent need for new theoretical foundations.

Keywords: autonomous system, trustworthy system development, dependability, machine learning, critical systems

engineering, validation, simulation and testing, requirement and scenario specification.

1 INTRODUCTION

1.1 Characteristics of Autonomous Systems

Autonomous systems emerge from the need to automate existing organizations by progressive and

incremental replacement of human operators by autonomous agents. They are very different from game-

playing robots or intelligent personal assistants, are often critical, and should exhibit ۔broad intelligenceە
by handling knowledge in order to adapt to unpredictable and complex environments. In particular, this

implies the ability to manage dynamically changing sets of possibly conflicting goals. Furthermore,

autonomous systems should be able to collaborate harmoniously with human agents to achieve common

goals.

The development of trustworthy autonomous systems, as anticipated by the Industrial Internet of

Things, is considered a bold step toward closing the gap between human and artificial intelligence.

Autonomous vehicles are a topical case, emblematically illustrating the difficulties in moving from

automation to autonomy. In contrast to the aerospace and rail industries, current trends in engineering

autonomous vehicles have not followed a ۔safety by designە concept. To overcome the technical
difficulties implied by model-based approaches, some industrial players have developed end-to-end ML-

enabled solutions, for which there exist no rigorous validation techniques. Furthermore, in contrast to

standard engineering practice, critical software can be modified by over-the-air updates.

ACM Trans. Embed. Comput. Syst.

Many believe that it is necessary to break with current development techniques, which constitute an

obstacle to the acceptance of new technologies. Some show blunt realism, by claiming that we should

charge ahead with new ideas, accepting the risks, as the benefits will be so great. Others reject rigorous

approaches as inherently inadequate for such complex systems and show blind faith in ad hoc solutions.

And then there are those who are wildly optimistic, believing that we already have the right tools and that

full autonomy is only a matter of time.

1.2 Trustworthiness

The design of autonomous agents should not be limited to logical aspects. It must also address risk

analysis, mitigation and evaluation, focusing on the dangerous situations that can result from the

interaction of the agent with its environment. We point out that existing techniques are not up to the task

because they assume an exhaustive analysis of the causes of the risk and the deployment of mitigation

mechanisms at the design stage. This does not seem realistic due to the inherent complexity of the

environment of an autonomous system. One trend in the quest to overcome these difficulties is to break

away from the idea of correction at design time, and indeed new ideas are emerging that rely on run-time

assurance techniques replacing static mitigation mechanisms.

The global validation of autonomous systems, regarded as ensembles of autonomous agents interacting

to achieve collective goals, challenges rigorous validation techniques not only due to complexity issues but

also by the lack of adequate modeling frameworks. Moreover, complexity arises not only from obvious

metrics like the number of lines of code or the number of components, but also from the temporal and

spatial dynamism of the agents' interactions with the cyber-physical and human environments.

Simulation and testing remain the only feasible approach to assess the trustworthiness of an overall

system. However, existing theory and techniques for testing hardware and software systems are model-

based. They pursue well-defined objectives in the form of coverage criteria or achievement of test

purposes that can be formulated and understood in a rigorous manner. Their application to autonomous

systems would require the development of far more powerful modeling and testing techniques, as well as

the formalization of adequate success criteria.

1.3 Can we Build Reliable Autonomous Systems?

Systems engineering is reaching a turning point, moving from small, automated, centralized, non-scalable

systems with predictable environments, to large, autonomous, distributed, reconfigurable systems with

unpredictable, dynamically changing environments. The two main problems, which are of comparable

importance, are: (1) the design of autonomous agents that are able to pursue predefined goals in

unpredictable environments, and (2) the global validation of autonomous systems composed of an arbitrary

(and dynamically changing) number of interacting agents.

Currently there are two different technical avenues for developing such systems, but both fall short of

addressing the full autonomy challenge. On the one hand, traditional model-based critical systems

engineering – successfully applied in, e.g., the automotive and aerospace industry – proves to be

inadequate for autonomous systems, being unable to deal with the overwhelming complexity of the

problem. On the other hand, end-to-end solutions based solely on machine learning (ML) – developed by

ACM Trans. Embed. Comput. Syst.

large technology companies such as Waymo and Nvidia's autonomous driving platforms – exhibit a lack of

explainability, which is a key barrier to their use for critical autonomous systems.

We provide a technical characterization of autonomous agents as the composition of characteristic

functions, allowing, among other things, a clear distinction between automation and autonomy. This

characterization shows that there is a big gap between automated systems and fully autonomous ones,

which cannot be bridged by mere incremental improvement of existing solutions. For example, the

inevitable integration into autonomous systems of modules that employ artificial intelligence makes

current non-AI systems engineering techniques and standards vastly inadequate. Moreover, we argue that

the vision of autonomous systems also raises difficult systems engineering issues that are not directly

related to achieving intelligence.

One of the promising avenues to explore further is "hybrid designە, which attempts to use the best parts
of the two approaches, ML-based and model-based, and to find tradeoffs between trustworthiness and

performance. A crucial issue is the need for a coherent integration of heterogeneous data and model-based

components into a rigorous design flow.

1.4 Structure of the Paper

The paper is a continuation of our work, as described in previous publications with Assaf Marron [1,2],

advocating the vision of an Autonomics foundation for future generation autonomous systems. In line

with this vision, the present paper provides a more detailed analysis of the problems to be addressed and

discusses possible technical paths towards solutions.

Section 2 explains why it is difficult to build autonomous systems, by describing in some detail the

many facets of the challenge.

Section 3 discusses issues related to hybrid design, assuming that the decision-making process is model-

based. It advocates the need for a hierarchical semantic model of the agent’s environment, integrating
concrete and symbolic data at different abstraction levels. The section closes with a presentation of non-

trivial issues regarding the application of existing risk analysis techniques to autonomous vehicles, and

indicates possible avenues towards their solution.

Section 4 presents ideas for evaluating overall system properties using simulation and testing. We show

how current methods and practices can be extended and adapted to autonomous systems, and identify

emerging technical requirements. We conclude with a discussion of criteria for corroborating conclusive

evidence of trustworthiness.

Section 5 discusses factors that we feel will play a decisive role in shaping the future, such as the

division of labor between humans and autonomous systems, the role and effect of regulations, and ethical

issues. We then conclude by articulating the urgent need for new theoretical foundations, bridging the gap

between machine and human intelligence.

ACM Trans. Embed. Comput. Syst.

2 REALIZING THE MAGNITUDE OF THE UNDERTAKING

2.1 Autonomy and Autonomic Complexity

The concept of autonomous systems has been around for more than two decades. It has motivated a large

amount of research and development, which, for the most part, falls under the headings of autonomic

computing [3], adaptive systems and autonomous agents. This work initially concerned purely software

systems, but the concept of autonomous system studied here emerges from the needs of the industrial IoT,

focusing on systems of intelligent reactive agents that replace humans in complex organizations and

facilities, such as realizing a cyber-physical system with human-level intelligence [4].

Replacing humans with machines suggests that the relevant test of intelligence cannot be just a textual

question-and-answer imitation game, as in the Turing test. The kind of intelligence required here might be

termed a replacement game, where the fact that a human has been replaced by an intelligent agent in a

large scale multi-agent system or organization, complete with its entire rich environment, will be

undetectable by a human tester.

2.1.1 Functional characterization of an autonomous agent

An autonomous system consists of components of predefined types, agents and objects, sharing a common

environment and coordinated so that their collective behavior meets given global objectives. The objects

themselves are usually dynamic physical systems, whose states can change either through the actions of

agents or internally.

An agent is a system (actually, a subsystem) that has the ability to monitor objects in its external

environment and act based on their states, either alone or in coordination with other agents. The agent

pursues a mission characterized by a set of specific goals that can change dynamically, depending on the

state of its environment.

The environment provides an infrastructure and mechanisms implementing coordination rules that

govern the interaction between the components, i.e., the agents and objects. In particular, these rules

determine the connectivity between agents, as well as the observability and controllability of objects.

ACM Trans. Embed. Comput. Syst.

Figure 1: Architecture of an autonomous agent for an autonomous vehicle, with its five key functions

We propose an architecture for an autonomous agent, consisting of five key functions that work

together to achieve autonomy. As we shall see, the architecture gives rise to a definition of autonomy as

the capability of an agent to achieve a set of coordinated goals without human intervention, adapting to

changes in the environment.

The agent is a reactive system [5] that receives and processes sensory information from its

environment, and computes commands, whereby actuators carry out actions that change the state of the

environment.

Figure 1 depicts an agent for an autonomous vehicle. Its internal environment is the vehicle whose

direction and speed are controlled by the agent. In its external environment, we see three vehicles, one

pedestrian and one traffic light. The agent processes the information concerning the environment, both

internal and external, and issues commands to carry out the actions needed to achieve specific goals. The

actions must take place within deadlines defined by the dynamics of the environment, in order to ensure

that the goals are achieved in a timely manner.

The agent combines five key functions, two of which are aimed at understanding environment

situations (perception and reflection) and two carry out the decision-making (goal management and

planning). The fifth function embodies the ability of knowledge management.

The agent is also equipped with a knowledge repository, where it stores acquired knowledge that is

useful for identifying and managing sensory information, in particular. Knowledge includes concepts

concerning objects in the environment and their properties, as well as methods for decision-making. In the

example at hand, the concepts of ۔car۔ ,ەpedestrianە and ۔lightsە are required in order to ۔understandە the

ACM Trans. Embed. Comput. Syst.

external environment. The repository for each of these concepts may contain information concerning their

characteristic properties, so that the system achieves better predictability; e.g., it may know the maximum

speed and acceleration of the specific type of car.

The function of perception receives sensory information from the environment (images, signals) and

analyses it by distinguishing between concepts, and possibly also relationships linking concepts that are

stored in the repository. In our example, the sensory information from the external environment contains

the three cars, the pedestrian and the traffic light, with corresponding information on their positions and

kinetic states. Regarding the internal environment, the sensory information concerns the kinetic state of

the vehicle, such as speed and acceleration. Perception is usually accomplished using neural networks,

which are currently the best technology for this purpose.

The perceived information is transferred to the reflection function, which is tasked with building a

model of the external and internal environment of the system. This model has variables that represent

states of the environment, such as the kinetic attributes of the obstacles and the state of the vehicle. The

actions of the model are state changes that the controlled vehicle or the obstacles around it can perform.

The model must be updated in real time, in order to reflect the dynamic state of the environment as

accurately as possible.

The decision-making module integrates two functions, using the environment model. The first of these

performs goal management, by selecting from a set of pre-defined goals a subset of compatible goals in

relation to the current state of the environment model. This is really the system's strategy. The system's

goals include both negative and positive ones. Negative goals concern the need to avoid undesirable states,

such as safety goals regarding collision avoidance. Positive goals concern the need to achieve desirable

conditions, such as optimizing passenger comfort, fuel consumption and arriving at a destination location.

We can also distinguish among various kinds of short-term goals, such as safety goals, medium-term

goals, e.g., for maneuvering the vehicle in order to overtake other vehicles or drive through intersections,

and long-term goals, such as completing an itinerary. Timely goal selection is crucial to system autonomy,

because it is highly complex and requires computation times that must satisfy real-time response

requirements.

Goal management is complemented by the planning function, which, after selecting the goals,

determines the system's tactics. For each set of selected goals, this function calculates a sequence of

commands to the actuators, which carry out corresponding actions to realize the commands. Thus, with

regard to the collision avoidance goal, it must control speed and direction by adequately combining

braking, acceleration and steering wheel angle. For every kind of maneuver, the system must have at its

disposal the appropriate tactics to achieve the corresponding goals.

Finally, the fifth key function is knowledge management, which manages and updates the knowledge on

the repository. Knowledge is updated through the creation of new knowledge, concerning (1) the

environment, e.g. new concepts based on accumulated knowledge from the analysis of model data; and (2)

ACM Trans. Embed. Comput. Syst.

new goals for adapting to changes in the environment and changes in parameter values that are relevant to

the choice between goals.

The agent’s operation is cyclically repetitive. The cycle begins with perception, followed by reflection
that updates the environment model. Then, decision-making takes place, possibly with the selection of

new goals, and following up on the execution of tactics that were not completed in the previous cycle.

These ۔leftoversە from the previous cycle can occur because the cycle’s duration must be short enough to
achieve some short-term goals (for safe driving this might be on the order of a tenth of a second), while

achieving long-term goals may take hundreds of thousands of cycles (e.g., to reach a destination).

Obviously, when new goals are selected in a cycle, they must be compatible with those that have already

been selected, but which have not yet been achieved.

Thus, autonomous behavior of an agent, defined earlier as the ability to achieve its goals without

human intervention, results from the combination of five mutually independent functions: perception,

reflection, goal management, planning and knowledge management. This characterization allows us to

distinguish between automated and autonomous systems. Automated systems such as thermostats or lifts

do not need any of these functions. They receive digital data from their environment and each pursue very

simple goals, achievable through static control policies.

2.1.2 Autonomic complexity issues

How difficult is it to build an autonomous agent? The previous functional characterization of autonomy

guides us into distinguishing the following aspects of autonomic complexity.

1. The complexity of perception characterizes the difficulty of interpreting the stimuli provided by the

environment and of generating in due time the corresponding inputs for the agent's environment model. It

has various sources, such as the ambiguity of the stimuli (admitting different interpretations) or their

imprecision (fuzzy or noisy stimuli). Furthermore, this type of complexity is compounded by the volume of

stimulus data needed to extract the relevant input information.

2. The complexity of the reflection characterizes the difficulty of building a faithful and predictive semantic

model of the agent's environment. This difficulty increases with two factors. The first is the lack of

observability/controllability, which implies but partial knowledge of the agent's environment, and

consequently limitations on building a faithful model. The second is the uncertainty about the agent's

environment, which limits predictability. There are multiple sources of uncertainty, including time-varying

load, dynamic changes due to mobility, and ۢburstyۣ events, as well as critical events like failures and cyber-

attacks. Clearly, reduced observability is a source of uncertainty. Nevertheless, the uncertainty cannot be

completely resolved by simply improving observability.

As explained above, the use of prerecorded knowledge can significantly improve situational awareness. For

example, in self-driving cars, the reflection function can combine perception information with semantically rich

prerecorded maps that show details of the road infrastructure, in order to build an even more accurate semantic model

of the environment.

ACM Trans. Embed. Comput. Syst.

3. The complexity of decision-making concerns goal management and planning. For goal management it

reflects the cost of computing maximal sets of compatible goals for a given state. This computation may

involve both qualitative criteria, such as priorities, and quantitative criteria, such as optimization of physical

quantities. For planning, the complexity depends on the type of goals and the complexity of the agent’s
environment model. As explained, goals may be as simple as non-violation of a constraint and more

complicated such as reachability of a condition or performance over a given time period.

4. The complexity of knowledge management has two aspects. One arises from supporting situational

awareness and decision-making, by providing appropriate knowledge. For example, for a given type of

obstacle identified, to provide the reflection function with information from the repository about its relevant

properties and enrich the semantic model; or to compute estimates of parameters used in the decision-

making process, such as delays, traffic density and risk parameters.

The other aspect consists of discovering new knowledge needed to face entirely new situations, not

foreseen at design time; e.g., situational awareness can be improved by the discovery of new concepts or

decision-making can be enriched by new objectives adapting to a changing environment.

2.2 Systems Engineering Complexity

As already explained, the construction of autonomous agents involves difficult system engineering

problems. We can define a concept of system complexity that characterizes the difficulty of building a

system from components, autonomous or not [6]. System complexity is the product of two factors: (1)

reactive complexity [7], which characterizes the difficulty of building the components constituting the

system, and (2) architectural complexity [6], which characterizes the difficulty of achieving the desired

coordination.

We show that component and architecture characteristics place autonomous systems among the most

difficult to build from a systems engineering perspective.

2.2.1 Reactive complexity

Reactive complexity characterizes the complexity of the interaction between a component, e.g., an agent or

an object, and its environment. It is independent of the space or time complexity that measure the amount

of computational resources required for its operation.

We propose a classification of components based on their reactive complexity.

The simplest kind of components are transformational components, where the relationship between

input and output values is sufficient to characterize their behavior. The computation is performed in batch

mode, without reference to any operating environment. Such components are often software systems

ignoring real time constraints, with simple and well-defined environments.

Streaming components compute functions on data streams, like encoders or signal processing systems.

For a given input value stream, they compute a corresponding output stream. Their goals concern mainly

functional correctness, with specific time-dependent properties such as latency.

ACM Trans. Embed. Comput. Syst.

Embedded components continuously interact with a physical environment to ensure global properties.

These are typically mixed HW/SW systems, where real-time behavior and dynamic properties are essential

for correctness.

Cyber-physical components have the highest reactive complexity, as they seek a tight integration

between computers and their physical environment [8]. They are embedded components integrating in

their internal environment objects that are exclusively under their control. The description of their

behavior requires both discrete and continuous variables representing the states of the integrated objects.

Autonomous systems, such as self-driving cars, smart grids, and smart factories should be built from

cyber-physical components, in order to meet the compelling needs for mobility and tight integration with

electromechanical devices.

2.2.2 Architectural complexity

Architectural complexity reflects the difficulty of modeling, analyzing and implementing coordination

mechanisms involved in the architecture of a system. Following a classification proposed in [6], we list

below some representative cases of increasing complexity.

Static architectures involve a fixed number of components, agents or objects, with fixed positions; e.g., a

smart building system architecture with fixed microcontrollers and connections to electromechanical

equipment.

Parametric architectures have an arbitrary, initially known number of ۔plug-inە types of components for
fixed coordination patterns; e.g., token ring architecture or cellular architecture.

Dynamic architectures are parametric architectures with dynamic creation/deletion of instances of

component types, such as client-server architectures. It should be noted that modeling and reasoning about

the properties of dynamic architectures requires languages that allow parametric and generic description,

such as higher order logics.

Mobile architectures are dynamic architectures where, in addition to temporal dynamism, there is spatial

dynamism: the coordinates of components can change dynamically, for example in mobile

telecommunication systems.

Self-organizing architectures are mobile architectures where the coordination rules of the components

depend on their position in a structure. For example, for self-driving cars and swarm robots, the

coordination of agents changes with time and space, but also depends on their position in an organization;

e.g., platooning architecture or stigmergy architecture.

2.2.3 Some conclusions

The proposed classification clearly shows the systems engineering issues underlying the development of

autonomous systems. These arise from the combination of physicality and computation, and include

component heterogeneity and composability, and multi-scale and multi-dimensional modeling and

analysis,

ACM Trans. Embed. Comput. Syst.

Self-organization is difficult to model and analyze because it involves three different types of

dynamism: temporal, spatial and organizational. We already know that verification techniques successfully

applied to the verification of static systems suffer from serious undecidability limitations when we move to

parametric architectures, even if they have finite state components e.g. [9]. Thus, formal verification of the

global properties of autonomous systems is not feasible.

Note that dynamism and distribution raise additional concerns. Autonomous systems involving dozens

of agents spanning a large area will not be free of undesirable emergent properties, even if each agent

considered separately is shown to be safe. Consider the trivial deadlock caused by four uncoordinated

vehicles waiting for each other at a four-way stop, strictly adhering to the right-of-way rule. Determining

and preventing the emergence of hazardous situations at design time is a difficult problem.

3 TRUSTWORTHY AUTONOMOUS AGENT DESIGN

Trustworthiness is a transversal design issue. It is not limited to purely functional correctness. A system is

deemed trustworthy if it behaves as expected despite design errors, hardware failures and any kind of

potentially harmful interaction with its human and physical environment, including misuse, attacks,

disturbances and any kind of unpredictable events [10].

In this section, we explain the limitations of current model-based approaches and explore the possibility

of using them in the agent design flow for the development of those functions for which their application,

if possible, would be highly beneficial. In particular, we discuss two underlying problems with model-

based decision-making and identify avenues for achieving trustworthiness in the face of hazards and

incidents.

3.1 Current Limitations of Model-based Approaches

Model-based systems engineering has been successfully applied to develop systems with guaranteed

trustworthiness, such as automotive, aerospace and production systems. There are many reasons that

existing methodologies are not applicable to the development of autonomous systems. Rigorous

methodologies, recommended by standards such as ISO 26262 for functional safety of road vehicles [11],

are based on the V-model [12], a prescriptive framework that assumes a top-down system design and

bottom-up validation flow.

A strong assumption underlying these methodologies is that the system requirements are known from

the start and can be clearly formulated and understood. Furthermore, the requirements must be

decomposed into properties satisfied by the system components in a top-down refinement process.

This assumption does not seem realistic for our purposes, even for non-autonomous complex systems,

since such systems are not designed from scratch; they are often built by incrementally modifying existing

systems and largely reusing components. In fact, projecting global system requirements into the

components of a system architecture is a non-trivial problem. Furthermore, the V-model assumes a

possibility of compositional validation after the completion of the implementation and that the correctness

of the system can be established by gradually moving from the components to the overall system

validation.

ACM Trans. Embed. Comput. Syst.

Post-design verification is not realistic for complex systems, where it is important to detect design

errors as early as possible. For these reasons, modern software engineering has moved away from the V-

model to so-called agile methodologies, which consider that coding and design should go hand in hand:

designs should be modified to reflect adjustments to requirements [13]. However, the problem of finding

rigorous methodologies that escape the V-model straitjacket and meet current needs remains entirely

open.

For autonomous systems, not only is the V-model not applicable, but the use of non-explainable ML

components prevents the full application of model-based methodologies. These limitations are particularly

reflected in the current lack of standards for autonomous vehicles.

As explained earlier, a compromise would be to adopt a hybrid approach that integrates model-based

decision-making modules with data-based components. The construction of such modules could build on

the well-established results of model-based adaptation, which would also provide high confidence

guarantees.

3.2 Model-based Decision-making

We discuss two key issues for model-based decision-making. The first is hierarchical decision-making and

the second is the representation of the external world using maps.

3.2.1 Hierarchical control architecture

The decision-making of an autonomous agent involves managing at least three different types of goals.

Short-term goals, which are subject to strict real-time and safety constraints. They require the system to

stay away from dangerous states. For example, for an autonomous vehicle, they would aim to avoid

collisions by keeping their distance from obstacles within certain limits or by following a pre-defined

trajectory. For smart grids, these goals mostly concern robustness; i.e., the ability to provide stable and

continuous energy flows.

Medium-term goals, which concern the transition between predefined operating modes, in order to

adapt to dynamically changing situations. For an autonomous vehicle, these goals require performing

maneuvers such as overtaking or crossing intersections of various types. For a smart grid, they are about

supporting the integration of renewable electricity and the system’s ability to reconfigure itself to adapt to
changing demand. Note that medium-term goals imply dynamic system reconfiguration and adaptability

under specific time constraints.

Long-term goals, which are designed to satisfy various types of non-critical properties, including

optimizing criteria or meeting given target conditions. For an autonomous vehicle, this might be

completing a trip by reaching a destination, or optimizing fuel consumption. For a smart grid, it may be

asset optimization, cost reduction, and operational efficiency.

It should be noted that medium-term goals are the most difficult to achieve because they are subject to

safety and system controllability requirements under the uncertainty that results from unpredictable

ACM Trans. Embed. Comput. Syst.

environments. In contrast, short-term goals usually lend themselves to formalization and can be achieved

by applying, e.g., well-established control theory and technology. This is typically the case for trajectory

tracking, collision avoidance or network robustness. On the other hand, long-term, non-time-critical goals

have less stringent requirements, and can be met using a variety of strategies.

This distinction between goals leads naturally to a hierarchical control paradigm for autonomous

agents. The lowest level is responsible for achieving short-term goals, the second involves tasks aimed at

achieving medium-term goals, and the third level deals with achieving long-term mission goals. Clearly,

the three levels operate on increasing time scales as one moves up the hierarchy.

The adoption of such a hierarchical control paradigm is advocated by the seminal work at NIST [14,15],

which proposed the 4D/Real-time Control System (RCS) reference architecture described in a series of

methodological and technical papers. Nevertheless, to our knowledge, it is not clear that 4D/RCS has ever

been fully applied, beyond modest demonstrations. Recent publications, e.g., [16, 17, 18, 19], address the

analysis of such architectures, but we still lack conclusive results as to the implications and risks of

applying the principle to real-world autonomous systems.

The main difficulty in implementing the hierarchical control principle lies is the timely and harmonious

coordination of the three levels, since control involves a complex top-down and bottom-up flow realizing

the interaction of processes with different underlying dynamics. The top-down flow ensures consistency

and controllability while the bottom-up flow ensures observability. In addition, the dynamic change of a

goal at one level must be consistent with the goals pursued at other levels. For example, if the execution of

a maneuver requires acceleration, this must be consistent with keeping the vehicle on its intended

trajectory.

Note that an underlying assumption of this approach is that agent autonomy is realizable as a dynamic

composition of a set of basic tasks, each allowing the achievement of a specific goal. It is analogous to, and

consistent with, the idea that human autonomy results from the intelligent combination of skills. For

example, the ability to drive is the combination of skills involving keeping a safe distance from obstacles,

maintaining a certain trajectory, performing various maneuvers, etc.

An advantage of the hierarchical control paradigm is that it is possible to analyze and verify separately

that each subsystem allows achieving the corresponding goal. For example, we can prove that the collision

avoidance system or the overtaking protocol are correct under certain integration conditions applied at the

agent architecture level. Of course, it remains to be demonstrated that the desired agent behavior can be

achieved by properly integrating a set of basic goal-achieving tasks into the hierarchical architecture.

Often, the integration conditions we want to assume are ones relevant to the AI/ML parts of the system

we are developing. Given that one cannot verify these parts (in the formal mathematical sense), we could

advocate ۔relative verificationە, which means that we verify the non-AI components of the system (or

portion thereof) that we want to verify, while assuming the correctness of the AI parts. This yields the

 of the system. Of course, this necessitates somehow defining what we even mean by ەrelative correctness۔

an AI/ML component being correct, which would presumably be a probabilistic statement about the

ACM Trans. Embed. Comput. Syst.

outcomes. However, from a purist’s stand, this is the best kind of verification one can strive for in the

context of an autonomous system with components of both kinds.

3.2.2 Map-based representation of the environment

Autonomous systems are overwhelmingly distributed systems too, with agents deployed in a variety of

spatial locations within some physical environment. As explained, the behavior of an agent depends

strongly on the physical context in which it evolves. Decisions are made based on a semantic model of the

environment, which takes into account the relevant geometric features and the presence of objects or

agents therein.

Thus, an agent’s semantic model is an abstraction of the physical environment as perceived by the
sensing devices. It can be represented by a suitable map, enriched with observable state attributes of

objects or agents in the agent's neighborhood.

Nevertheless, relying exclusively on models built from local sensory information is often not sufficient

for effective autonomy. To manage medium and long-term goals and anticipate external changes, a

broader view of the environment is needed. For example, autonomous cars can use maps stored in a

repository enriched with online traffic information, which would be similar to, but vastly richer than, the

maps used in current car navigation systems. These maps are essential to indicate long-term goals such as

the route taken by the vehicle or to anticipate situations beyond the agent's visibility. For example,

knowing the geometric characteristics of a nearby roundabout allows for better preparation of the

corresponding maneuver.

Consistent with the distinction between the three types of goals, the external environment maps we

need should themselves be designed at three different levels of abstraction. High-level maps are used to

represent long-term goals, such as the entire mission goals, and provide a description of the area where the

autonomous agent can operate; e.g., for autonomous vehicles, a map of the road network where routes can

be indicated.

The middle-level maps describe the environment at a scale that provides the details necessary to

implement the medium-term goals. These involve features of the environment that require a specific agent

control policy. For autonomous vehicle maneuvers, we need maps providing detailed geometric

descriptions of roads with their lanes, and of intersections with their entrances and exits and associated

traffic rules.

Finally, the low-level maps should provide a detailed description of the current external environment

with all relevant information for efficient decision-making. This description can be obtained by merging

sensory information and existing detailed maps, and must be updated in real time.

The coherent integration of the three modeling levels raises some non-trivial issues related to the

connection between the concrete map representations obtained by the fusion of sensory information, and

the available symbolic and semantically rich pre-existing map representations.

ACM Trans. Embed. Comput. Syst.

For effective situational awareness, the perception function must be able to distinguish not only simple

objects, but also relevant object models, and for this, the use of pre-existing map models may be required

too. For example, the autopilot of an autonomous vehicle must be able to unambiguously identify different

types of intersections and their associated signaling equipment.

There have been extensive efforts to define adequate semantic map models for autonomous vehicles.

These include proposals for the standardization of semantically rich map models [20, 21]. Other work

focuses on formalizing maps using ontologies and logics and applying reasoning mechanisms to check the

consistency of descriptions and their accuracy with respect to desired properties [22, 23, 24, 25].

In summary, building faithful semantic models for autonomous systems is a challenging problem

arising from the fact that autonomous systems will be deployed in physical environments and their

interactions will take place there. This requires a multi-scale representation of the environment in the

form of maps reflecting the scope and granularity of different objectives. Moreover, it poses the problem of

linking in real time the concrete knowledge generated by machine learning techniques on the perceived

agent’s environment with pre-existing and semantically rich symbolic knowledge.

3.3 Design for Dependability

Critical system development involves design for dependability, which aims to ensure that if certain

assumptions about the system's nominal behavior are violated for any reason, the system will be resilient

and can avoid or circumvent hazardous situations. Dependability is not a black or white concept, in

contrast to correctness with respect to a set of well-defined specifications. It takes into account failure

rates of physical components, rare events, system misuse and malevolent actions, and is usually

characterized by a set of probabilistic attributes such as reliability, availability, maintainability, etc. [26].

Design for dependability involves a three-step flow: risk analysis, risk mitigation and risk assessment.

Risk analysis aims at providing answers to the following questions: What are the consequences of

system hazards, what can go wrong, and how likely are these to occur [27]. Briefly, there is a large number

of risk analysis techniques available to study the links between the different causes of risk and their

potential effects. They cover a wide range of methods and practices, from the simplest, such as fault tree

analysis [28], to the most sophisticated, involving architecture analysis, such as STPA [29] or data flow

analysis, such as FPTC [30]. The causes of risk can be "internal", such as design errors or software bugs, or

external, due to human misbehavior (malicious or not) or natural causes, like failures or disasters. Their

effects can be hazards compromising the safety, the security or the performance of the system.

Risk analysis cannot be fully automated, and it requires common sense engineering skills and a

thorough understanding of the system’s behavior and its interaction with the environment. It requires
good systems engineering expertise, and obviously it can be tedious, as it requires thorough case-by-case

analysis.

Risk analysis techniques, successfully applied to automated systems operating in aircraft or factories,

are difficult to apply to autonomous systems due to the complexity and unpredictability of that latter’s

ACM Trans. Embed. Comput. Syst.

physical and human environment. For example, a failure typology for light vehicles published in a DOT

document [31], lists 37 cases, many of which are difficult to analyze because they are the results of

imponderable events or human and animal actions

Existing risk mitigation methods suffer from similar limitations. They involve the systematic design of

mechanisms to address the hazards/threats identified in the risk analysis by implementing the so-called

DIR (detection, isolation, recovery) mechanisms designed to ensure resilience [32]. For each type of hazard,

a detection mechanism is implemented with associated isolation techniques to contain its effect until a

mitigation mechanism can take over.

Isolation techniques are of a variety of types, ranging from partitioned architectures, so that the

memory and processing time of one partition is not affected by another faulty partition, to firewalls,

cryptography and privileged access management. Similarly, recovery techniques range from the use of

massive redundancy in hardware architectures, such as TMR, to rollback or roll-forward for software

systems, to reconfiguration techniques.

As already explained, these techniques are enumerative in nature and imply high combinatorial

complexity for unpredictable environments. In general, their application is prohibitive for autonomous

systems. It can be considered for risks that are easy to identify and characterize, such as those caused by

failures in electromechanical systems, but these represent only a small fragment of the risk factors. For

example, [33] identifies nine categories of risk for autonomous vehicles, including 176 different types of

hazards.

For hazards that are difficult to predict and assess, the tendency is not to try to detect and mitigate risks

through dedicated mechanisms statically at design time, but rather to achieve resilience using assurance

mechanisms at runtime.

Figure 2 illustrates a materialization of this idea with a runtime assurance architecture [34]. This

architecture involves a trusted Monitor that detects deviations from the nominal behavior of an untrusted

system, specified by a set of essential system properties. The Untrusted System can be of any type, such as

an autonomous agent or a neural network, which controls some Facility.

ACM Trans. Embed. Comput. Syst.

Figure2: Run-time assurance architecture

The Trusted Monitor receives the output of the Untrusted System and is able to detect online any

violation of the essential system properties. Upon detection of the offending event, it triggers a switch that

replaces the output of the Untrusted System with the output of a Trusted System that can take over and

provide some minimal service, so as to keep the Facility safe. When the Trusted Monitor diagnoses the

recovery of the Untrusted System, it prompts the switch to swap outputs back and resort back to normal

behavior.

Note that the runtime assurance architecture extends the Simplex paradigm used in fault tolerant

systems. The Simplex architecture differs from this in that when a hazard is detected, the system is

directed to a fail-safe state and shuts down [35].

Runtime assurance is also consistent with the idea of hybrid control for collision avoidance, which has

been proposed for self-driving cars, where an unreliable optimized controller is monitored by a provably

safe controller [36, 37].

The application of the runtime assurance paradigm involves considerable technical difficulties that

should not be underestimated, and it requires (like several other ideas in this paper) non-trivial further

research. Although the Untrusted System is treated as a black box, the development of trusted components

must be model-based and then properly validated. Note that if the essential properties are formalized in

linear temporal logic, it is possible to use well-established online verification techniques to automatically

generate the Monitor [38, 39].

It is important to realize that detection of property violation must occur early enough so that the

Trusted System can still mitigate the hazard. This requires a deeper understanding and analysis of the

Facility’s dynamics in order to anticipate the hazard and adequately counter it by mitigating its effect
online.

4 AUTONOMOUS SYSTEMS VALIDATION

There is a significant gap between the state of the art in system validation and verification, and the

validation needs of truly autonomous systems. How can existing results be integrated and extended into a

ACM Trans. Embed. Comput. Syst.

rigorous validation methodology aimed at providing conclusive trustworthiness evidence? We provide

elements of an answer by analyzing various aspects of the validation problem and related methodological

and technical issues.

Simulation and testing seem to us be the only feasible way for validation, especially when we consider

an entire autonomous system. And this is regardless of the approach used for agent development – model-

based or data-based. In the industrial world, there is an increasing awareness of the importance of

simulation techniques for validation purposes, especially for autonomous vehicles.

For self-driving cars, a sufficiently low risk ratio per simulated mile is currently considered a near

guarantee of safety [40]. However, this argument is not defensible, for the simple reason that not all

simulated miles are equally effective. It is necessary to explain how simulated miles relate to "real miles".

This requires a deeper understanding, through rigorous modeling, of the extent to which all relevant

system configurations have been explored.

Among other things, we discuss what would be required of a solid and useful validation methodology,

arguing that it must rely on model-based criteria, by carefully and rigorously exploring a meaningful and

relevant sample of system configurations.

4.1 Simulation and Testing Architecture

Figure 3 describes a general simulation and testing architecture for validating autonomous systems against

given specifications, suitably formalized as safety properties or bounded accessibility properties. The

architecture integrates three tools: i) a Simulator; ii) a Scenario Generator; and iii) a Monitor.

The simulation is driven by actions generated by the Scenario Generator. Its runtime coordinates the

execution of an autonomous system model and generates runs that are then verified online by the Monitor.

The model should ideally consist of two entities: 1) a world model that includes a map representing the

global static environment, as well as the system agents with their state attributes; 2) behavioral models of

the agents and their possible interactions.

The model thus defines a dynamic system involving agents and objects that interact in a static

environment represented by a map. The states of the agents and objects are defined by sets of attributes

concerning their internal state and their kinetic state. However, unlike static systems whose global states

are tuples of states of their components, the global states of autonomous systems are configurations

involving not only the states of their components, agents and objects, but also contextual information

depending on their position on the map [25]. This information is needed in order to determine the possible

interactions between the components, as well as the interactions between the components and their

physical environment.

ACM Trans. Embed. Comput. Syst.

Figure 3: Simulation and test architecture for validating autonomous systems

For example, a configuration of an autonomous transport system contains the states of its vehicles and

their positions on a map with its signaling equipment. Thus, the behavior of a vehicle depends on its state

but also on the constraints induced by the possible interactions it may have with other vehicles, and by the

interpretation of the physical environment with the associated traffic equipment.

The simulator operates in a cyclic manner. At the beginning of a cycle step, it provides each agent with

the current relevant information about the configuration of its neighborhood, as well as requests to

execute control actions of a scenario. At the end of the step, it calculates the new configuration resulting

from the state changes reported by the agents. We assume that the Simulator exports to the other tools

runs of system configurations as well as implementations of basic predicates, variables, and actions, via an

interface, say an adequately defined API.

A central and crucial part of this setup is the Scenario Generator, which applies a test strategy that

drives the entire simulation process. The scenarios it generates are coordinated sequences of actions, to be

executed by the agents in the Simulator. Thus, scenarios play the role of test cases intended to drive the

simulated system towards specific configurations, for example to explore high-risk configurations, or to

meet specific coverage criteria, as discussed below

The Monitor continuously receives the generated runs and applies runtime verification techniques to

check online that they meet the given specifications. In addition, it can provide diagnostics and key

performance indicators used by the Scenario Generator in its testing strategy. As explained, for any

monitored run, the specifications express either safety, e.g., that all configurations of the run satisfy some

ACM Trans. Embed. Comput. Syst.

safety condition on configurations, or bounded reachability, e.g., that there exists some configuration of

the run that satisfies a desirable condition.

The architecture is an adaptive testing environment: using common terminology, the Simulator

corresponds to a Unit under Test, the Monitor is an Oracle and the Scenario Generator plays the role of a

Test Case Generator.

4.2 Requirements for Simulation

We are of the unequivocal opinion that simulation is of paramount importance for validation of

autonomous systems, and that it covers a wide variety of aspects – from the purely technical to the

theoretical. We see three main requirements for a good simulation:

1. Realism: The agent's behavior and environment must look real, involving suitable graphics that relay the

situations and the dynamics thereof in a way that is true to reality. For modest examples of realistic-looking

simulation models for biological systems see, e.g., [41, 42].

2. Semantic awareness: From the description of the simulated system model, it should be possible to extract a

semantic model, including a well-defined notion of system configuration. This allows one to define

predicates on system configurations that will be used by the monitor to verify online system properties. Note

that semantic awareness implies that the simulated models respect fundamental properties of time and space,

because configurations have time and space attributes. For example, if there are two different runs leading

from one configuration to another, the travel time and distance along these sequences must be comparable.

3. Multiscale/multigrain modeling: We have identified at least three different levels of modeling abstraction

corresponding to the different types of goals pursued. In order to analyze and validate the behavior of the

system with respect to the properties relevant to these goals, it is important to be able to adjust the

granularity of the simulation appropriately. Coarse-grained simulation is sufficient for mission-related

properties while fine-grained simulation is essential for the lower level dynamic properties of an agent,

taking into account the details of the physical space.

To meet the above requirements and to cope with the complexity of the simulated systems, we need

specific execution infrastructures such as HLA or FMI, integrating the execution of specific simulation

engines at different space and time scales [8].

Note that realism and semantic awareness are not easy to reconcile. Industrial simulation environments

often favor realism because they are built on top of game platforms that have not been developed with

semantic awareness in mind. Obviously, the configurations of the exported semantic model must take into

account only essential aspects of the environment. They can ignore the details that are not involved in the

formalization of the properties to validate, even if these may affect the system’s dynamics and hence the
results of the simulation. For example, weather conditions may have an impact on vehicle dynamics while

they are not relevant for the expression and validation of basic traffic rules.

4.3 Scenario Generation and Testing

The Scenario Generator receives configuration runs exported by the Simulator and applies rules in order to

control the evolution of the simulated system, e.g., to explore particular situations or to enforce given

ACM Trans. Embed. Comput. Syst.

properties. In practice, scenarios give rise to sequences of control actions that modify parameters of the

agents in the simulated system, and hence their states. For instance, if the agents are vehicles, the

parameters can be their initial positions on the map, or their itineraries,

Obviously, the scenarios must be compatible with the behavior of the agents specified in the simulator

and their operational context. For example, if a scenario requires a vehicle to accelerate, this must be

compatible with its collision avoidance policy. In other words, the Scenario Generator must apply

sequences of actions gradually and carefully, following an adaptive policy that takes into account the

configuration of the simulated system at each step.

There has been a large amount of work devoted to the study of scenarios for autonomous driving

systems. This includes the Open-SCENARIO proposal [43] for the description of scenarios for driving and

traffic simulators, as well as papers on the use of scenarios in testing and validation methods.

The work in [44] proposes a visual formal specification language for capturing scenarios, termed LSCs

(live sequence charts), which was inspired by MSCs (message sequence charts). Possible applications of

this language for the specification and testing of autonomous vehicles were proposed in [45]. See also the

executable version of this language, in [46]. The work in [47] presents an approach for automated

scenario-based testing of the safety of autonomous vehicles, using metric temporal logic. Finally, the

probabilistic language Scenic [48] for the design and analysis of cyber physical systems uses scenarios to

control and validate simulated systems of self-driving cars.

Is it possible to extend conventional testing techniques to autonomous systems? Testing strategies

should aim to optimize criteria, such as coverage, or to test functional properties. While for software

systems coverage can be defined as the ratio of source code exercised during the execution of test

sequences, it is not clear how a similar criterion can be defined for autonomous systems. One of the main

reasons for this is the non-availability of a comprehensive definition of the requirements and possible

scenarios, from which to derive coverage criteria. Furthermore, functional testing assumes the existence of

system behavioral models.

4.4 Monitoring and Validation

The Monitor applies online verification techniques to check whether the configuration runs generated by

the Simulator satisfy the monitored properties. These characterize the evolution of agents on a map, which

plays the role of a kind of "global resource" shared by the agents.

The validation of autonomous systems has motivated work on logics and associated verification

techniques. Nevertheless, existing results on the validation of reconfigurable dynamic systems can be

specialized to autonomous systems, for example [39, 49].

The work in [50] proposes a formalization of traffic rules in linear temporal logic and applies runtime

verification to check that the maneuvers of a high-level planner are consistent with the rules. In [51, 52], a

set of traffic rules for highway scenarios is formalized in Isabelle/HOL. It is shown that traffic rules can be

used as requirements to be met by autonomous vehicles, and a verification procedure is proposed. In [53],

ACM Trans. Embed. Comput. Syst.

a formalization of traffic rules for uncontrolled intersections is proposed in first-order logic, and the rules

are applied by a simulator to control traffic at intersections.

Consistent with prevailing approaches, the specification language we need can be a linear first-order

temporal logic generated from a set of appropriately chosen atomic propositions. These are predicates

expressing relations between the states of components, agents or objects, or relations between components

and their static environment. For example, for autonomous vehicles, we need distance predicates, e.g.,

constraints on the distance between two vehicles, or location predicates, e.g., a vehicle should wait in front

of a stop sign [25]. The API of the Simulator must provide implementations of the atomic propositions that

can be evaluated on exported system configurations.

Note that quantification is necessary, in order to express genericity and parameterization of variables

on agent domains or static environment structures. In particular, it allows one to express properties that

hold for all agents or for all environment models of a certain type, or, dually, for at least one thereof. For

example, traffic rules for roundabouts involve a universal quantification on vehicles and on this type of

junction.

Checking that a configuration run meets a given specification involves two steps. The first deals with

the elimination of quantifiers in the formulas, taking account of the instances of the agents and the

context. The second step deals with the generation from the resulting propositional temporal logic formula

of a corresponding finite state automaton that characterizes the runs satisfying the formula and can be

used for online verification of the observed behavior [38, 39, 49, 50].

To reduce the complexity of the space of configurations to be explored, we need structuring criteria

inducing useful property-preserving abstractions. One solution to deal with this complexity is

metamorphic testing [54], which can allow a drastic reduction of the number of test cases to be considered.

It consists in defining "metamorphic relationships" on configurations, and by extension on scenarios too.

Intuitively, if two scenarios are related, they both satisfy the same set of properties. Thus, executions

conducted by related scenarios from the same initial configurations should be indistinguishable by the

Monitor. Thus, testing but one scenario per class can result in coverage guarantees for all its scenarios.

Another approach applied to reconfigurable systems [39, 49], consists of associating with a

configuration a hypergraph representing the possible interactions between its components, objects or

agents. Given a configuration, the vertices of the corresponding hypergraph are the components involved

in the configuration and the hyper-edges represent the possible interactions between the components.

Intuitively, a set of components can interact if their behavior is constrained by the same property. It is

therefore possible to group together configurations that have the same associated hypergraphs if the states

of their components are ۔closeە enough. For example, two configurations involving three vehicles traveling

one after the other on a lane have the same hypergraph induced by the traffic rules, and they can thus be

considered ۔equivalent" under certain conditions on their kinematic states. This simplification, used for the

efficient monitoring and analysis of reconfigurable systems [55], can be advantageously applied to

autonomous systems too, as proposed in [25].

ACM Trans. Embed. Comput. Syst.

5 THE WAY AHEAD

Success in achieving widespread acceptance and deployment of autonomous systems will depend on our

ability to adequately address not only the multifaceted scientific and technical challenges, but also the

related societal and ethical issues, striking the right balance in the symbiosis between humans and

machines.

5.1 Moving from Automated to Autonomous Systems

How can we increase the degree of autonomy in a design and what are the underlying technical

challenges? The proposed functional characterization of autonomous agents provides some insights into

this issue, which is at the heart of the transition from automation to full autonomy.

SAE International proposes a six-level hierarchy of driving automation, ranging from manual to fully

autonomous systems [56]. The first three levels, 0 to 2, characterize degrees of automation, where a driver

is ultimately responsible for driving the vehicle, possibly assisted by advanced driver-assistance systems

(ADAS). In levels 3 to 5, the autopilot is responsible for driving the system. Level 3 requires supervision of

the autopilot by a human driver, level 4 allows autonomous driving in geo-fenced environments, while

level 5 provides full autonomy without restriction.

This hierarchy suggests that the difficulty of moving from one level to another may be progressive.

However, there is a major gap between automation and autonomy. At levels 0 to 2, ADAS systems operate

under the control of the driver and can be turned on and off at any time, except in very specific critical

situations. In contrast, at levels 3 to 5, the autopilot is responsible for driving, which is no small difference

at all! ADAS cannot merely evolve progressively into autonomous driving systems, because automation

and autonomy are two very different issues, as explained in Section 2.

In addition, the supervision of vehicles on autopilot prescribed by level 3 is proving to be a very risky

idea. Safe collaboration between autonomous systems and humans raises symbiotic autonomy issues that

go far beyond traditional HMI. When the autopilot proactively requests human intervention, the human

must have the information and the time to understand the situation and act appropriately. Furthermore, if

the supervisor realizes that something is wrong, disengaging the autopilot or overriding the machine's

decisions should result in situations controllable immediately by the human.

ACM Trans. Embed. Comput. Syst.

Figure 4: The automation/autonomy space

Finally, there is a significant gap between level 4 and level 5. Indeed, most of the complexity factors of

autonomy stem from the lack of confidence in the perception function and the unpredictability of the

external environment. Level 4 autonomy minimizes the risks associated with these factors. Driving in geo-

fenced environments greatly simplifies the perception problem due to far greater predictability and vastly

fewer possible interactions and configurations. Furthermore, for such environments, extensive

instrumentation can be used to improve the quality of perception. For example, platooning of trucks on

highways seems to be feasible in the near future.

Figure 4, which is consistent with, and in fact reflects, our characterization of autonomy, shows how

varying degrees of autonomy can be achieved through the interplay of four parameters: 1) complexity of

situation awareness; 2) complexity of decision-making; 3) absence of human intervention in operating the

system; and 4) complexity of knowledge management. The grey intervals delimit pure automation: the

environmental stimuli are digital data and the operation of the system under human control, possibly

assisted by automated systems.

The degree of autonomy increases as one moves from the automation zone away from the origin, as

when, for example, one moves from digital sensory data to quality data, and then to general data that may

be ambiguous and/or vague. Autonomy also increases as one moves from human to machine control, with

the human remaining in the loop, with or without the possibility of intervention.

When the operation of the system is controlled by the machine, decision-making concerns management

at the level of goals, or even the entire mission. Finally, autonomy is reinforced by the ability to manage

ACM Trans. Embed. Comput. Syst.

knowledge, as we move from fixed knowledge to the case where the system generates knowledge, creating

in the process new concepts and objectives.

In conclusion, although there is a clear distinction between automation and autonomy, there are

different ways to increase the autonomy of a system. We note that similar ideas have been presented in

[57, 58] to study the degrees of autonomy of assistants.

5.2 Matching Human Situation Awareness

Humans are far superior to machines in understanding complex situations, simply because they possess

common sense knowledge and reasoning [59]. The human mind understands situations by combining: 1)

bottom-up reasoning, from the sensor level to concepts; and 2) top-down reasoning, from concepts to

perception. It is equipped with a semantic model of the world built progressively since our birth. Common

sense knowledge relies on this model to understand natural language and to deal with real life situations.

On the other hand, machine learning only goes from the bottom upward. For example, it has been

reported that an autopilot mistook the moon for a yellow traffic light [60]. This type of error could never

happen to humans, simply because sensory information is contextualized using common sense logic

(traffic lights cannot be in the sky!).

Similarly, when we see a stop sign partially covered with snow and decide that it is indeed a stop sign,

it is because, despite the snow, we are able easily to verify that the image matches a conceptual model of a

stop sign with its properties (size, color and location). On the other hand, a neural network must be trained

to recognize stop signs in all possible weather conditions. This explains the difference between humans

and neural networks in their speed of knowledge acquisition.

Furthermore, humans outperform machines in that they can effectively manage rare events and

emergent situations. They can be creative/inventive and are not limited to managing a predefined number

of goals.

In summary, for machines to match human situational awareness, they must be able to combine

concrete sensory information with an extremely rich body of symbolic knowledge. The challenge is

therefore to develop "self-learning systems" capable of progressively building semantic models of their

environment by combining learning and reasoning techniques. This is probably the most difficult problem

to solve, as shown by the poor progress made so far in the semantic analysis of natural languages.

5.3 Regulations and Ethical Issues

Trustworthiness is obviously a technical concept, but it also has a subjective and social dimension. Since

we all live in one modern society or another, we cannot ignore the role of institutions that contribute

directly or indirectly to shaping public perceptions on what is true, right, safe, etc. The certification of

critical systems has mostly remained the prerogative of independent agencies according to well-founded

standards that require conclusive evidence that is based on models [61]

The acceptance of autonomous systems will depend on our decisions about when to trust them and

when not to. Making these choices wisely depends on two factors. The first is our ability to define

ACM Trans. Embed. Comput. Syst.

standards and regulations for autonomous systems based on robust and transparent evaluation criteria. In

our view, the current trend toward self-regulation and self-certification should be a temporary stopgap

measure rather than a permanent answer to the quest for trustworthiness. The development of the new

standards will depend on the evolution of the state of the art and the willingness of authorities to exercise

effective control for the protection of users.

The second factor is a heightened social consciousness and an ever-expanding sense of political

responsibility. In general, public opinion is becoming less forgiving towards system failures than towards

human errors, such as accidents caused by an autonomous car versus accidents caused by a human driver.

Even if autonomous systems can eventually be made as trustworthy as humans, their acceptance to

perform highly critical tasks will always be questioned.

It would be good to apply the precautionary principle that already underlies European Union laws and

regulations: when computers are part of critical decision-making processes, we must ensure that their

judgment is safe and fair [62]. Such a principle should be enshrined in the laws and regulations governing

the development and deployment of autonomous systems.

The ethical question raised by the unregulated use of autonomous systems is whether we accept that

critical decision-making processes rely on machine-generated knowledge that allows predictability

without understanding. We believe that the threat is not that computer intelligence will come to surpasses

human intelligence and that computers could take over human societies by plotting. The real danger

comes from the massive replacement of responsible and accountable human operators in critical decision-

making processes, by computing devices and software.

Let us hope that we will not buckle under the pressure of economic interests, and based on doubtful

performance benefits will be tempted to grant decision-making power to autonomous systems without

rigorous and strictly founded guarantees,.

5.4 Towards a New Scientific and Engineering Foundation

We have explained that the autonomy vision involves important systems engineering issues that are not

directly related to achieving intelligent behavior. Furthermore, monolithic end-to-end solutions based on

artificial intelligence are not likely to be accepted because they preclude trustworthiness guarantees by

taking an explanation-lacking, verification-resisting approach. Instead, hybrid approaches are more viable

because they can leverage a robust body of knowledge for safe and effective decision-making combined

with the effectiveness of AI-based techniques.

Since we have claimed that overall system validation is only possible through simulation and testing, it

is important that we develop a sound theoretical and methodological framework for trustworthiness

assessment. This framework will be empirical and similar to those used for knowledge development in

physical sciences, although there are important differences between the physical world and the virtual

world of system models.

ACM Trans. Embed. Comput. Syst.

Will the model-driven paradigm become obsolete due to the increasing diversity and complexity of

autonomous systems? It is likely that we will not be able to apply rigorous development techniques to

achieve the same level of confidence as for airplanes, e.g., 10
-9

 failures per hour of flight. In practical terms,

this means that we should probably limit our ambitions for total autonomy and seek symbiotic autonomy

schemes [63] that mark an appropriate division of labor between man and machine. Unless we devise new

paradigms for system development, such as the use of correct-by-construction techniques, which would

provide confidence guarantees without resorting to explicit system modeling.

Another crucial problem that we encounter in different contexts is to bridge the gap between symbolic

knowledge and concrete information. In particular, this arises when we try to link symbolic models of the

environment to concrete models obtained from the analysis of sensory information.

This problem motivates many works on explainable AI. The idea is to extract from a neural network

mathematical models explaining its behavior. This is theoretically possible for a neural network, given its

structure and the mathematical function that characterizes the input/output behavior of its nodes. In

particular, for feed-forward networks this is achieved by propagating the input values along each layer to

compute the output values. It is clear that the difficulty of this propagation depends on the type of

activation function of the nodes.

Promising results for ReLU networks, for example [64, 65], pave the way for formal verification as well

as robustness and sensitivity analysis. If the inherent complexity issues can be overcome, we can expect

better integration of data-based and model-based approaches in hybrid design flows.

Addressing the challenge of autonomy would be a major step in bridging the gap between machine and

human intelligence. To achieve this, it is not enough to combine existing results from autonomous

computing, adaptive systems and autonomous agents. It will require a new scientific and technical

foundation, which we have termed Autonomics, and which will no doubt require time and effort to build.

REFERENCES

[1] David Harel, Assaf Marron and Joseph Sifakis, Creating a Foundation for Next-Generation Autonomous Systems, IEEE Des. Test 39(1): 49-56

(2022).

[2] D. Harel, Assaf Marron and J. Sifakis, Autonomics: In Search of a Foundation for Next Generation Autonomous Systems, Proc. Natl. Acad. Sci.

117:30 (2020), 17491-17498.

[3] Autonomic Computing. An architectural blueprint for autonomic computing. IBM White Paper, 31(2006):1ۙ6, 2006.

[4] Michael I. Jordan, Artificial IntelligenceۚThe Revolution Hasn’t Happened Yet, HDSR, https://hdsr.mitpress.mit.edu/pub/wot7mkc1/release/9

[5] David Harel and Amir Pnueli, On the development of reactive systems, Logics and models of concurrent systems, (K. R. Apt, ed.), NATO ASI

Series, Vol. F-13, Springer-Verlag, New York, 1985, pp. 477-498.

[6] Joseph Sifakis, Autonomous Systems An Architectural Characterization, November 2018, https://arxiv.org/abs/1811.10277

[7] S. Efroni, D. Harel, I.R. Cohen, Reactive animation: Realistic modeling of complex dynamic systems, Computer, January 2005.

[8] Simon Bliudze, Sébastien Furic, Joseph Sifakis, Antoine Viel: Rigorous design of cyber-physical systems - Linking physicality and computation.

Softw. Syst. Model. 18(3): 1613-1636 (2019)

[9] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, J. Widder, Decidability of Parameterized Verification, Synthesis, Lectures on

Distributed Computing Theory, Morgan & Claypool Publishers, 2015.

[10] J. Sifakis, Rigorous System Design, in Foundations and Trends in Electronic Design Automation, vol. 6, num. 4, p. 293-362, 2012.

[11] https://www.iso.org/obp/ui/#iso:std:iso:26262:-9:ed-1:v1:en

[12] https://en.wikipedia.org/wiki/V-Model

ACM Trans. Embed. Comput. Syst.

[13] Agile 101, https://www.agilealliance.org/agile101/ , Agile Alliance

[14] Rajmohan Madhavan, Elena R. Messina, James S. Albus, Intelligent Vehicle Systems: A 4D/RCS Approach, Nova Science Publishers, Inc., June

2006.

[15] James S.Albus, Anthony J.Barbera, RCS: A cognitive architecture for intelligent multi-agent systems, Annual Reviews in Control, Volume 29,

Issue 1, 2005, Pages 87-99.

[16] Simon Ulbrich, Andreas Reschka, Jens Rieken, Susanne Ernst, Gerrit Bagschik, Frank Dierkes, Marcus Nolte, and Markus Maurer,Towards a

Functional System Architecture for Automated Vehicles, arXiv:1703.08557 [cs.SY], March 2017

[17] Sara Dersten, Jakob Axelsson, Joakim Fröberg, An Analysis of a Layered System Architecture for Autonomous Construction Vehicles, 2015

Annual IEEE Systems Conference (SysCon) Proceedings, April 2015.

[18] Thomas Braud, Jordan Ivanchev, Corvin Deboeser, Alois C. Knoll, David Eckhoff, Alberto L. Sangiovanni-Vincentelli: AVDM: A hierarchical

command-and-control system architecture for cooperative autonomous vehicles in highways scenario using microscopic simulations. Auton.

Agents Multi Agent Syst. 35(1): 16 (2021)

[19] Jonathan Aldrich, David Garlan, Christian Kästner, Claire Le Goues, Anahita Mohseni-Kabir, Ivan Ruchkin, Selva Samuel, Bradley R. Schmerl,

Christopher Steven Timperley, Manuela Veloso, Ian Voysey, Joydeep Biswas, Arjun Guha, Jarrett Holtz, Javier Cámara, Pooyan Jamshidi, Model-

Based Adaptation for Robotics Software. IEEE Softw. 36(2): 83-90 (2019).

[20] OpenDRIVE® Format Specification. Tech. Rep. V 1.4 ©2006-2015, VIRES Simulationstechnologie GmbH (2015), retrieved from

https://www.asam.net/standards/detail/opendrive

[21] ASAM OpenDRIVE® - Open Dynamic Road Information for Vehicle Environment. Tech. Rep. V 1.6.0, ASAM e.V. (March 2020), retrieved from

https://www.asam.net/standards/detail/opendrive

[22] Beetz, J., Borrmann, A.: Benefits and limitations of linked data approaches for road modeling and data exchange. In: Smith, I .F.C., Domer, B. (eds.)

Advanced Computing Strategies for Engineering - 25th EG-ICE International Workshop 2018, Lausanne, Switzerland, June 10-13, 2018,

Proceedings, Part II. Lecture Notes in Computer Science, vol. 10864, pp. 245-261. Springer (2018)

[23] Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: 2018 IEEE Intelligent Vehicles

Symposium, IV 2018, Changshu, Suzhou, China, June 26-30, 2018. pp. 1813-1820. IEEE (2018).

[24] Poggenhans, F., Pauls, J., Janosovits, J., Orf, S., Naumann, M., Kuhnt, F., Mayr, M.: Lanelet2: A high-definition map framework for the future of

automated driving. In: Zhang, W., Bayen, A.M., Medina, J.J.S., Barth, M.J. (eds.) 21st International Conference on Intelligent Transportation

Systems, ITSC 2018, Maui, HI, USA, November 4-7, 2018. pp. 1672-1679. IEEE (2018)

[25] Marius Bozga, Joseph Sifakis, Specification and Validation of Autonomous Driving Systems: A Multilevel Semantic Framework, arXiv:2109.06478

[cs.MA], September 2021.

[26] Jean-Claude Laprie, Dependability: Basic concepts and terminology, Dependable Computing and Fault-Tolerant Systems, vol 5. Springer, 1992

[27] George Apostolakis, How Useful Is Quantitative Risk Assessment?, Risk Analysis, Vol. 24, No. 3, 2004.

[28] W. S. Lee, D. L. Grosh, F. A. Tillman, C. H. Lie, Fault Tree Analysis, Methods, and Applications A Review, IEEE Transactions on Reliability, Vol.

R-34, No. 3, August 1985.

[29] Nancy G. Leveson, John P. Thomas, STPA Handbook, March 2018

[30] Malcolm Wallace, Modular Architectural Representation and Analysis of Fault Propagation and Transformation, Electronic Notes in Theoretical

Computer Science 141 (2005) 53ۙ71

[31] Pre-Crash Scenario Typology for Crash Avoidance Research, DOT HS 810 767, NHTSA, April 2007

[32] A Zolghadri, Advanced model-based FDIR techniques for aerospace systems: Today challenges and opportunities, Progress in Aerospace Sciences,

2012, Elsevier

[33] Asim Abdulkhaleq, Daniel Lammering, Stefan Wagner, Jürgen Rôder, Norbert Balbierer, Ludwig Ramsauer, Thomas Rastec, Hagen Boehmert, A

Systematic Approach Based on STPA for Developing a Dependable Architecture for Fully Automated Driving Vehicles, 4th European STAMP

Workshop 2016, Procedia Engineering 179 (2017) 41-51.

[34] RTJohn D. Schierman, Michael D. DeVore, Nathan D. Richards, Neha Gandhi, Jared K. Cooper, and Kenneth R Horneman, Runtime Assurance

Framework Development for Highly Adaptive Flight Control Systems, Barron Associates, Inc. Stony Brook University, December 2015, AFRL-RQ-

WP-TR-2016-0001Final Report

[35] L. Sha, Using simplicity to control complexity, IEEE Softw. 18 (4) (2001) 20ۙ28.

[36] J. R. Mayo, R. C. Armstrong, G. C. Hulette, M. Salloum, A. M. Smith, Robust Digital Computation in the Physical World, Cyber-Physical Systems

Security, 2018.

[37] M. Althoff, S. Maierhofer, C. Pek, Provably-correct and comfortable adaptive cruise control, IEEE Transactions on Intelligent Vehicles , Volume: 6,

Issue 1, March 2021

[38] Andreas Bauer, Martin Leucker, and Christian Schallhart, Runtime Verification for LTL and TLTL, ACM Trans. Softw. Eng. Methodol. 20, 4 (2011),

14.

[39] Antonio Bucchiarone and Juan P. Galeotti, Dynamic Software Architectures Verification using DynAlloy. Electron. Commun. Eur. Assoc. Softw.

Sci. Technol. 10 (2008).

[40] https://blog.waymo.com/2019/08/waymo-reaches-5-million-self-driven.html

[41] Y. Setty, I. R. Cohen, Y, Dor and D. Harel, Four-Dimensional Realistic Modeling of Pancreatic Organogenesis, Proc. Natl. Acad. Sci. 105:51 (2008),

ACM Trans. Embed. Comput. Syst.

20374-20379.

[42] N. Bloch, G. Weiss, S. Szekely and D. Harel, An Interactive Tool for Animating Biology, and Its Use in Spatial and Temporal Modeling of a

Cancerous Tumor and Its Microenvironment" PLoS ONE 10:7 (2015), e0133484. doi:10.1371/journal.pone.0133484.

[43] ASAM Open.Scenario® - Dynamic content in driving simulation, UML Modeling Rules. Tech. Rep. V 1.0.0, ASAM e.V. (Mar 2020),

https://www.Mam.net/standards/detail/openscenario

[44] W. Damm and D. Harel, "LSCs: Breathing Life into Message Sequence Charts", Formal Methods in System Design 19:1 (2001), 45-80.

[45] Damm, W., Kemper, S., Môhlmann, E., Peikenkamp, T., Rakow, A. Using traffic sequence charts for the development of HAVs. In: ERTS 2018,

Toulouse, France, Jan 2018, Proceedings (2018)

[46] D. Harel and R. Marelly, Come, Let's Play: Scenario-Based Programming Using LSCs and the Play-Engine, Springer-Verlag, 2003.

[47] Fremont, D.J., Kim, E., Pant, Y.V., Seshia, S.A., Acharya, A., Bruso, X., Wells, P., Lemke, S., Lu, Q., Mehta, S.: Formal scenario-based testing of

autonomous vehicles: From simulation ta the real world. In: 23rd IEEE International Conference on Intelligent Transportation Systems, ITSC 2020,

Rhodes, Greece, September 20-23, 2020. pp. 1--8. IEEE (2020).

[48] Fremont, D.J., Kim, E., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Scenic: A language for scenario specification and

data generation, CoRR abs/2010.06580 (2020), https: //arxiv .org/abs/2010 .06580

[49] Antoine El-Hokayem, Marius Bozga, Joseph Sifakis, A temporal configuration logic for dynamic reconfigurable systems. SAC 2021: 1419-1428

[50] Esterle, K., Aravantinos, V.1 Knoll, A.C.: From specifications ta behavior: Maneuver verification in a semantic state space. In: 2019 IEEE Intelligent

Vehicles Symposium, IV 2019, Paris, France, June 9-12, 2019. pp. 2140-2147. IEEE (2019).

[51] Rizaldi, A., Althoff, M.: Formalising traffic rules for accountability of autonomous vehicles. In: IEEE 18th International Conference on Intelligent

Transportation Systems, ITSC 2015, Gran Canaria, Spain, September 15-18, 2015. pp. 1658-1665. IEEE (2015).

[52] Rizaldi, A., Keinholz, J., Huber, M., Feldle, J., Immler, F., Althoff, M., Hilgendorf, E., Nipkow, T.: Formalising and monitoring traffic rules for

autonomous vehicles in Isabelle/HOL. In: Polikarpova, N., Schneider, S.A. (eds.) Integrated Formal Methods - 13th International Conference, IFM

2017, Turin, Italy, September 20-22, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10510, pp. 50-66, Springer (2017).

[53] Karimi, A., Duggirala, P.S.: Formalizing traffic rules for uncontrolled intersections. In: 11th ACM/IEEE International Conference on Cyber-Physical

Systems, ICCPS 2020, Sydney, April 21-25, 2020. pp. 41-50. IEEE (2020).

[54] Zhou, Z.Q., Sun, L.: Metamorphic testing of driverless cars. CACM 62(3), 61-67 (2019)

[55] Antoine El-Hokayem, Saddek Bensalem, Marius Bozga, Joseph Sifakis: A Layered Implementation of DR-BIP Supporting Run-Time Monitoring

and Analysis. SEFM 2020: 284-302

[56] SAE International Releases Updated Visual Chart for Its ۢLevels of Driving Automationۣ Standard for Self-Driving Vehicles

https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-

automation%E2%80%9D-standard-for-self-driving-vehicles

[57] Jerrold M. Grochow, A Taxonomy of Automated Assistants, Communications of the ACM, April 2020, | Vol. 63, NO. 4 |

[58] Fernando Galdon, Ashley Hall and Stephen Jia Wang, Designing trust in highly automated virtual assistants: A taxonomy of levels of autonomy,

In book: Artificial Intelligence in Industry 4.0: A collection of innovative research case-studies, June 2020.

[59] Ernest Davis and Gary Marcus, Commonsense reasoning and commonsense knowledge in artificial intelligence, Communications of the ACM,

August 2015, https://doi.org/10.1145/2701413

[60] https://www.ndtv.com/offbeat/watch-tesla-autopilot-feature-mistakes-moon-for-yellow-traffic-light-2495804

[61] Neumann, P.G.: Trustworthiness and truthfulness are essential. Commun. ACM 60(6), 26ۙ28 (2017).

[62] https://en.wikipedia.org/wiki/Precautionary_principle

[63] Stuart Mason Dambrot, Derrick de Kerchove, Francesco Flammini, Witold Kinsner, Linda MacDonald Glenn, and Roberto Saracco. IEEE symbiotic

autonomous systems white paper ii, 2018.

[64] Guy Katz, Clark Barrett, David Dill, Kyle Julian and Mykel Kochenderfer, Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks,

arXiv:1702.01135v2 [cs.AI], 19 May 2017

[65] Nicola Franco, Tom Wollschläger, Nicholas Gao, Jeanette Miriam Lorenz, Stephan Günnemann, Quantum Robustness Verification: A Hybrid

Quantum-Classical Neural Network Certification Algorithm, arXiv:2205.00900v1 [quant-ph], 2 May 2022.

